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APPENDIX A

EIGENVALUE PROBLEMS

A.1
Summary of Matrices

A column vector is indicated by


  f1
  f2
f  =
   .

   .

   .

  fN

A matrix consisting of M rows and N columns is defined by


A11
A12
. . .  A1N
A21
A22
. . .  A2N
A31
A32
. . .  A3N
A  =
 
 .

 .

 .

AM1
AM2
. . .  AMN

A is said to be an M x N matrix which is denoted by Aij.  The vector f is considered as a M x 1 matrix.


The product of a M x N matrix with a N x K matrix gives a M x K matrix.  It is obvious that matrix multiplication is not commutative, that is AB is not equal to BA.  When C = AB we have



Cik  =  Σ Aij Bjk .

Matrix products are associative so that A(BC) = (AB)C.

On the basis of the rule of matrix multiplication, the product of a row vector (1 x N) and a column vector (N x 1) gives a (1 x 1) matrix, or the scalar product



ft f  =  f1f1 + f2f2 + ... + fNfN.

But the product of a column vector (N x 1) and a row vector (1 x N) gives a (N x N) matrix, or a vector product


f1f1   f1f2
...
  f1fN


         f2f1   f2f2
...
  f2fN
f ft  =

 .

 .

fNf1   fNf2
...
  fNfN


To summarize these few properties of matrix multiplication: (a) matrix multiplication is not commutative, (b) the ji element of AB is the sum of products of elements from the jth row of A and ith column of B, and (c) the number of columns in A must equal the number of rows in B if the product AB is to make sense.

There are several matrices that are related to A.  They are:

(a)
At which is the transpose of A so that [At]ij = [A]ji,

(b)
A* which is the complex conjugate of A so that 

[A*]ij = [A]*ij,

(c)
A+ which is the adjoint of A so that [A+]ij = [A]*ji, and

(d)
A-1 which is the inverse of A so that A-1A = AA-1 = I, 

where I denotes the identity matrix.

A few definitions follow:

(a)
A is real if A* = A,

(b)
A is symmetric if At = A,

(c)
A is antisymmetric if At = -A,

(d)
A is Hermitian if A+ = A,

(e)
A is orthogonal if A-1 = At, and

(f)
A is unitary if A-1 = A+.

A.2
Eigenvalue Problems


To understand some of the techniques for solving the radiative transfer equation it is necessary to review solutions to eigenvalue problems.  When a operator A acts on a vector x, the resulting vector Ax is in general distinct from x.  However there may exist certain non-zero vectors for which Ax is just a multiple of x.  That is

A x  =  λ x

or written out explicitly

Σ Aij xj  =  λ xi    I=1,...,n  .


Such a vector is called an eigenvector of the operator A, and the constant λ is called an eigenvalue.  The eigenvector is said to belong to the eigenvalue.  Consider an example where the operator A is given by




 1
  2
  3


x1


 4
  5
  6
   =  A   ;
x2
= x .   



 7
  8
  9


x3

So we are trying to solve



x1 + 2x2 + 3x3 = λx1


4x1 + 5x2 + 6x3 = λx2


7x1  + 8x2 + 9x3 = λx3
For a nontrivial solution the determinant of coefficients must vanish




1-λ
  2
 3



 4
 5-λ
 6

= 0   



 7
  8
9-λ


This produces a third order polynomial in λ whose three roots are the eigenvalues λi.


There are several characteristics of the operator A that determine the character of the eigenvalue.  Briefly summarized they are (a) if A is hermitian, then the eigenvalues are real and the eigenvectors are orthogonal (eigenvectors of identical or degenerate eigenvalues can be made orthogonal through the Gram Schmidt process) and (b) if A is a linear operator, then the eigenvalues and eigenvectors are independent of the coordinate system.  A proof of (b) is quickly apparent.

A x  =  λ x

Let Q represent an arbitrary coordinate transformation, then



γ-1 A x  =  λ γ-1 x



γ-1 A γ γ-1 x  =  λ γ-1 x



A' x'  =  λ x' .

Thus if x is an eigenvector of the linear operator A, its transform



x'  =  γ-1 x

is an eigenvector of the transformed matrix



A'  =  γ-1 A γ,

and the eigenvalues are the same.

It is often desirable to make a transformation to a coordinate system in which A' is a diagonal matrix and the diagonal elements are the eigenvalues.  The desired transformation matrix consists of the eigenvectors of the original matrix A.




e1
e2
en     



γ  =



(
(
(

where the jth col consists of components of eigenvector ej.  For the transformation to be unitary, the eigenvectors must be orthonormal (orthogonal and normalized).

A.3
CO2 Vibration Example


Consider the problem of molecular vibrations in CO2, which is shown schematically as a simple linear triatomic molecule system consisting of three masses connected by springs of spring constant k.  Let xi represent deviations from the equilibrium position.


x1
x2
  x3


m

 m



O
C
  O

The kinetic energy of this system can be written


   1

       1    



T    =
           Σ mivi2  =           vt  M  v


   2    i
       2

where v represents dx/dt.  The potential energy is given by


 1

      1



P  =
         Σ  Pijxixj  =          xt  P  x


 2    ij
 
      2

where

  
   (P
           1
       (2P




P  = Po +  Σ  (        )o  xi +          
Σ  (               )o xi xj



      

        i
   (xi

  2
ij    (xi (xj
and without loss of generality let Po = 0 and use the fact that  (P/(x = 0 at equilibrium.  Then Lagrange's equation:



  d
(T

(P



         
           +
          



  dt
(v

(x

with


 1


  1



T  =
        mv2  and  P  =           kx2, 


 2


  2

becomes

 

mv  =  - kx .

This suggests a solution of the form xi = ai sin (ωit + (i), so that



Σ  Pij  aj - ω2 Tij aj  =  0  .



j

Now the potential energy is written



1

     1




P  =         k (x2 - x1)2 +         k (x3 - x2)2


2

     2



 1



 =
         k (x12 + 2x22 + x32 - 2x1x2 - 2x2x3) ,



 2

so the matrix operator is,




 k
 -k
   0




P  =
-k
 2k
  -k     



 0
 -k
   k


which is real and symmetric.  And the kinetic energy is written



1


  1             




T =
     m (x12 + x32)   +
        Mx22 ,  



2


  2           

so the matrix operator is




m
o
o




T  =

o
M
o



o
o
m


which is diagonal.  So, we find | P - ω2T | = 0 implies



k-ω2m
-k
 
  o




det A   =  [
  -k 
      2k-ω2M
 -k   
]   = 0



   o

-k            k-ω2m

and direct evaluation of the determinant leads to the cubic equation 




ω2(k-ω2m)(kM + 2km - ω2Mm)  =  0  .

This yields the three roots





ω1  =  0 ,  ω2  = [k/m]1/2 ,  ω3  =  [(k/m)(1+2m/M)] 1/2. 

Now solve for the eigenvectors.  For ω1 = 0




 k
-k
 0

a11


-k
2k
-k

a12
= 0   => a11 = a12 = a13


 0
-k
 k

a13

which represents a translation since the centre of mass doesn't move  mx1 + Mx2 + mx3 = 0.

For ω2 = [k/m]1/2 





 0
  -k

0

a21               




-k
2k-kM/m    -k

a22    
= 0 =>  a22 = 0, a21 = -a23



 0
  -k
  
0

a23

which represents a vibration in the breathing mode with the carbon molecule stationary and the oxygen molecules moving in opposite directions.

For ω3 = [(k/m)(1+2m/M)]½ 






-2mk/M    -k
0
      a31  




-k 
    -kM/m    -k
      a32         = 0  => a31 =  a33 , a32 = -(2m/M)a31



 0
      -k     -2mk/M         a33  


which represents the carbon molecule motion offset by the combined motion of the oxygen molecules.

Recalling that the mass of the proton is given by  mp = 1.67x10-27 Kg, that the spring constant for the CO2 is roughly k ~ 1.4x103 J/m2 (from the second derivative of the potential curves), and that m = 16mp while M = 12mp, then

  1.4x103


 32

ω3 = [                                      (1     +
          ) ]½ = [.192 x 1030]2  = .438 x1015 ,

    16x1.67x10-27

 12

and

2πc

2π 3x108
λ   =
               =
                            ~  4.3 x 10-6 m  =   4.3 μm

 ω

.438x1015
This simple one dimensional model of the CO2 molecular motions yields the absorption wavelength of 4.3 micron observed in the spectra. Considering two dimensional vibrations yields the solution at 15 micron.
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