Tag Archives: M-15
December Fluff
By now, you probably know the drill: a little bit of discussion about a particular subject, throw in a few pop culture references, maybe a video or two, then get to the good stuff – high quality VIIRS imagery. Then, maybe add some follow-up discussion to emphasize how VIIRS can be used to detect, monitor, or improve our understanding of the subject in question. Not today.
You see, VIIRS is constantly taking high quality images of the Earth (except during orbital maneuvers or rare glitches). There isn’t enough time in a day to show them all, or go into a detailed discussion as to their relevance. And, nobody likes to read that much anyway. So, as we busily prepare for the upcoming holidays, we’re going to skip the in-depth discussion and get right to the good stuff.
Here then is a sample of interesting images taken by VIIRS over the years that weren’t featured on their own dedicated blog posts. Keep in mind that they represent the variety of topics that VIIRS can shed some light on. Many of these images represent topics that have already been discussed in great detail in previous posts on this blog. Others haven’t. It is important to keep in mind… See, I’m starting to write too much, which I said I wasn’t going to do. I’ll shut up now.
Without further ado, here’s a VIIRS Natural Color image showing a lake-effect snow event that produced a significant amount of the fluffy, white stuff back in November 2014:
As always, click on the image to bring up the full resolution version. Did you notice all the cloud streets? How about the fact that the most vigorous cloud streets have a cyan color, indicating that they are topped with ice crystals? The whitish clouds are topped with liquid water and… Oops. I’m starting to discuss things in too much detail, which I wasn’t going to do today. Let’s move on.
Here’s another Natural Color RGB image using the high-resolution imagery bands showing a variety of cloud streets and wave clouds over the North Island of New Zealand:
Here’s a Natural Color RGB image showing a total solar eclipse over Scandinavia in 2015:
Here’s a VIIRS True Color image and split-window difference (M-15 – M-16) image showing volcanic ash from the eruption of the volcano Sangeang Api in Indonesia in May 2014:
Here’s a VIIRS True Color image showing algae and blowing dust over the northern end of the Caspian Sea (plus an almost-bone-dry Aral Sea):
Here is a high-resolution infrared (I-5) image showing a very strong temperature gradient in the Pacific Ocean, off the coast of Hokkaido (Japan):
The green-to-red transition just southeast of Hokkaido represents a sea surface temperature change of about 10 K (18 °F) over a distance of 3-5 pixels (1-2 km). This is in a location that the high-resolution Natural Color RGB shows to be ice- and cloud-free:
Here’s a high-resolution infrared (I-5) image showing hurricanes Madeline and Lester headed toward Hawaii from earlier this year:
Here are the Fire Temperature RGB (daytime) and Day/Night Band (nighttime) images of a massive collection of wildfires over central Siberia in September 2016:
Here is a 5-orbit composite of VIIRS Day/Night Band images showing the aurora borealis over Canada (August 2016):
Here is a view of central Europe at night from the Day/Night Band:
And, finally, for no reason at all, here’s is a picture of Spain wearing a Santa hat (or sleeping cap) made out of clouds:
There you have it. A baker’s ten examples showing a small sample of what VIIRS can do. No doubt it will be taking more interesting images over the next two weeks, since it doesn’t stop working over the holidays – even if you and I do.
The Sirocco and the Giant Bowl of Dust
As mentioned before on this blog, there are typhoons, hurricanes, and cyclones, and they’re all basically the same thing. They’re just given a different name depending on where they occur in the world. Similarly, there are many different names for winds (not counting the classification of wind speeds developed by a guy named Beaufort). There’s the Chinook, the Santa Ana, the bora, the föhn (or foehn), the mistral, the zonda, the zephyr and the brickfielder. (A more complete list is here.) Some of these winds are different names for the same phenomenon occurring in different parts of the world, like the föhn, the chinook, the zonda and the Santa Ana. Others are definitely different phenomena, with different characteristics (compare the mistral with the brickfielder), but they all have the same basic cause: the atmosphere is constantly trying to equalize its pressure.
The Mediterranean is home to wide variety of named winds, one of which is the sirocco (or scirocco). (Europe is home to wide variety of languages, so this wind is also known as “ghibli,” “jugo” [pronounced “you-go”], “la calima” and “xlokk” [your guess is as good as mine].) Sirocco is the name given to the strong, southerly or southeasterly wind originating over northern Africa that typically brings hot, dry air and, if it’s strong enough, Saharan dust to Europe. Of course, after picking up moisture from the Mediterranean, the wind becomes humid, making life unpleasant for people along the north shore. Hot, humid and full of dust. Perhaps it’s no surprise that the sirocco is believed to be a cause of insomnia and headaches.
Now, I don’t know how hot it was, but an intense low pressure system passed through the Mediterranean around Leap Day and, out ahead of it, strong, southerly winds carried quite a bit of dust from northern Africa into Italy. Here’s what it looked like in Algeria. And here’s what it looked like in Salento. See if you can see that dust in these True Color VIIRS images:
No problem, right? With True Color imagery, the dust is usually easy to identify and distinguish from clouds and the ocean because it looks like dust. It’s the same color as the sky over Salento, Italy in that video I linked to. The top image shows multiple source regions of dust (mostly Libya, with a little coming from Tunisia) being blown out over the sea. The second image shows one concentrated plume being pulled into the clouds over the Adriatic Sea, headed for Albania and Greece.
By the way, this storm system brought up to 2 meters (6.5 feet) of snow to northern Italy, and even brought measurable snow to Algeria! Africa and Europe made a trade: you take some of my dust, and I’ll take some of your snow.
But, this wasn’t the worst dust event to hit Europe recently. Here’s what the VIIRS True Color showed over Spain and Portugal on 21 February 2016:
And VIIRS wasn’t the only one to see this dust. Here’s a picture taken by Tim Peake, an astronaut on the International Space Station. Again, it’s easy to pick out the dust because it almost completely obscures the view of the background surface. But, what if the background surface is dust colored?
We switch now to the other side of the world and the Takla Makan desert in China, where the dust has been blowing for the better part of a week:
Can you tell what is dust and what is the desert floor? Can you see the Indian Super Smog on the south side of the Himalayas? Here is the same scene on a clear (no dust) day:
There is a subtle difference there, but you need good eyesight to see it. It might be easier to see if you loop the images:
You’ll have to click on the image to see it animate.
Did you notice the dark brown areas surrounding the Takla Makan? Those are areas that have green vegetation during the summer. Notice how they become completely obscured by the dust as the animation progresses. That’s one one way to tell that there’s dust there. But, as we have seen before, there are other ways to see the dust.
There’s EUMETSAT’s Dust RGB composite applied to VIIRS:
That’s another animation, by the way, so you’ll have to click on it to see it animate. The same is true for the Dynamic Enhanced Background Reduction Algorithm (DEBRA), which we also talked about before:
But, there’s one more dust detection technique we have not discussed before: the “blue light absorption” technique:
The Blue Light Dust detection algorithm keys in on the fact that many different kinds of dust absorb blue wavelengths of light more than the longer visible wavelengths. It uses this information to create an RGB composite where dust appears pastel pink, clouds and snow appear blueish and bare ground appears green. Of course, other features can absorb blue light as well, like the lakes near the northeast corner of the animation that show up as pastel pink. But, depending on your visual preferences and ability to distinguish color, the Blue Light Dust product gives another alternative to the hot pink of the EUMETSAT Dust RGB, the yellow of DEBRA, and the slightly paler tan of the True Color RGB.
One question you might ask is, “How come DEBRA shows a more vivid signal than the other methods?” In the True Color RGB, dust is slightly more pale than the background sand, because it’s made up of (generally) smaller sand particles (which are more easily lofted by the wind) that scatter light more effectively, making it appear lighter in color. In the EUMETSAT Dust RGB, dust appears hot pink because the “split window difference” (12 µm – 10.7 µm) is positive, while the difference in brightness temperatures between 10.7 µm and 8.5 µm is near zero and the background land surface is warm. In DEBRA, the intensity of the yellow is related to the confidence that dust is present in the scene based on a series of spectral tests. DEBRA is confident of the presence of dust even when the signals may be difficult to pick out in the other products, either because it’s a superior product, or because its confidence is misguided. (Hopefully, it’s the former and not the latter.)
By the way, the Takla Makan got its name from the native Uyghurs that live there. Takla Makan means “you can get in, but you can’t get out.” It has also been called the “Sea of Death.” I prefer to call it “China’s Big Bowl of Dust.” It’s a large area of sand dunes (bigger than New Mexico, but smaller than Montana) surrounded on most of its circumference by mountains between 5000 and 7000 m (~15,000-21,000+ feet!). The average annual rainfall is less than 1.5 inches (38 mm). That means when the wind blows it easily picks up the dusty surface, but that dust can’t go anywhere because it’s blocked by mountains (unless it blows to the northeast). The dust is trapped in its bowl.
The Takla Makan is also important historically, because travelers on the original Silk Road had to get around it. Notice on this map, there were two routes: one that skirted the northern edge of the Takla Makan and one that went around the southern edge. This part of Asia was the original meeting point between East and West.
CIRA produces all four imagery products over the Takla Makan desert in near-real time, which you can find here. And, in case you’re curious, you can check out how well DEBRA and the EUMETSAT Dust products compare for the dust-laden siroccos over southern Europe and northern Africa by clicking here and here (for the first event over Spain and Portugal) or here and here (for the second one over Italy and the Adriatic Sea).
Horrendous Haboob in the Heart and Heat of History’s Homeland
We mentioned India earlier this year due to a hellish heatwave. It’s only fair that we talk about one of the other cradles of civilization (human history) and another horrible weather-related h-word.
People have been living along the Nile River in northeastern Africa and on the Arabian Peninsula for thousands of years (dating back to the Paleolithic Era). And, every once in a while, a story comes along that makes you wonder why. I’m not talking about the never-ending human conflict that has plagued the region. I’m talking about the hostile climate. (Of course, it wasn’t always hostile. There have been periods of abundant moisture. Read this. Or this.)
If you’ve watched Raiders of the Lost Ark, you are no-doubt familiar with the ancient city of Tanis, and the story about it that was the basis of the whole plot of the movie. If you haven’t seen the movie: 1) shame on you; and, 2) watch this clip.
“The city of Tanis was consumed by the desert in a sandstorm that lasted a whole year.”
I hate to be the bearer of bad news but, that part of the story is false. No year-long sandstorm hit Tanis. And, despite rumors that the actual Ark is buried in Tanis, it has never been found. (Because it’s stored in a giant government warehouse! Duh!) Plus, Indiana Jones is a fictional character in a movie. But, the movie is not entirely false. According to this article, a major archaeological find did take place at Tanis right before World War II (led by a French archaeologist, no less), and very few people know about it because of the war. Plus, there really was an Egyptian Pharaoh named Shoshenq/Shishak.
Even if Tanis was not buried by a year-long sandstorm, that doesn’t mean nasty sandstorms don’t exist. In fact, most of the Middle East is still dealing with a massive sandstorm that lasted a whole week last week. This storm put Beijing’s air pollution to shame. In fact, the dust reached the highest concentrations ever recorded in Jerusalem since Israel became it’s own country in 1948. It was responsible for several fatalities. Here are some pictures. Here’s a video from Saudi Arabia. Here’s what it looked like in Jordan and Lebanon. And, of course, what follows is what the storm looked like in VIIRS imagery.
Since this dust storm lasted a whole week, we got plenty of VIIRS imagery of the event. It started on the afternoon of 6 September 2015, and here’s the first VIIRS True Color image of it:
Can you see it? (Click on the image to see the full resolution version.) A trained eye can spot it from this image alone. An untrained eye might have difficulty distinguishing it from the rest of the desert and sand. Look for the tan blob over Syria that is obscuring the view of the Euphrates river.
If you can see that, you can track it over the rest of the week:
This animation was reduced to 33% of it’s original size to limit the bandwidth needed to display it. It contains the afternoon overpasses (1 image per day) because you need sunlight to see things in true color. And, while it suffers from the fact that animated GIFs only allow 256 colors (instead of the 16,777,216 colors possible in the original images), you should be able to see the dust “explode” over Israel, Lebanon and Jordan over the next two days. It eventually advects over northwestern Saudi Arabia, Egypt and Cyprus during the rest of the week.
The last time we looked at a major dust storm, the dust was easy to see. It was blown out over the ocean, which is a nice, dark background to provide the contrast needed to see the dust. Here, the dust is nearly the same color as the background – because it is made out of what’s in the background. Is there a better way to detect dust in situations like this?
EUMETSAT developed an RGB composite explicitly for this purpose, and they call it the “Dust RGB.” And we’ve talked about it before. And, here’s what that looks like:
Since this RGB composite uses only infrared (IR) channels, it works at night (although not as well) so you can get twice as many images over this time period. It also makes dust appear hot pink. The background appears more blue in the daytime images, so the dust does stand out. But, the background becomes more pink/purple at night, so the signal is harder to see at those times. Still, you can see the dust spread from Syria to Egypt over the course of the week.
My colleagues at CIRA have developed another way to identify dust: DEBRA. DEBRA is an acronym for Dynamic Enhanced Background Reduction Algorithm. As the name implies, DEBRA works by subtracting off the expected background signal, thereby reducing the background and enhancing the signal of the dust. So, instead of trying to see brown dust over a brown background (i.e. True Color RGB) or trying to see hot pink dust over a pinkish/purplish background (i.e. EUMETSAT Dust RGB) you get this:
DEBRA displays dust as yellow over a grayscale background. The intensity of the yellow is related to the confidence that a given pixel contains dust. It could display dust as any color of the rainbow, but yellow was chosen specifically because there are fewer people that are colorblind toward yellow than any other type of colorblindness. That makes the dust very easy to see for nearly everyone. (Sorry, tritanopes and achromats.) One of the biggest complaints about RGB composites is that the 7-12% of the population that has some form of colorblindness have difficulty trying to see what the images are designed to show. (Since I’m so fond of RGB composites, I better check my white male trichromat privilege. Especially since, according to that last link, white males are disproportionately colorblind.) The point is: we now have a dust detection algorithm that works well with (most) colorblind people, and it makes dust easier to see even for people that aren’t colorblind. DEBRA also works at night, but I’ve only shown daytime images here to save on filesize.
The last two frames of the DEBRA animation show something interesting: an even more massive dust storm in northern Sudan and southern Egypt! Fortunately, fewer people live there, but anyone who was there at the time must have a story to tell about the experience. Here are closer up views of that Sudanese sandstorm (or should I say “haboob” since this is the very definition of the word?). First the True Color:
Next, the EUMETSAT Dust RGB:
And, finally DEBRA:
If you’re wondering why the DEBRA image doesn’t seem to line up with the other two, it’s because I cheated. The DEBRA image came from the third Meteosat Second Generation satellite (MSG-3), which is a geostationary satellite. The majority of the haboob was outside our normal VIIRS processing domain for DEBRA, so I grabbed the closest available MSG-3 image. It has much lower spatial resolution, but similar channels, so DEBRA works just as well. And, you don’t necessarily need high spatial resolution to see a dust storm that is ~ 1000 km across. What MSG-3 lacks in spatial resolution, it makes up for in temporal resolution. Instead of two images per day, you get 1 image every 15 minutes. Here is a long loop of MSG-3 images over the course of the whole week, where you can see both sandstorms: (WARNING: this loop may take a long time to load because it contains ~600 large images). Keep your eye on Syria early on, then on Egypt and Sudan. Both haboobs appear to be caused by the outflow of convective storms. Also, how many other dust storms are visible over the Sahara during the week? For comparison purposes, here’s a similar loop of EUMETSAT Dust images. (MSG-3 does not have True Color capability.)
These sandstorms have certainly made their impact: they’ve broken poor air quality records, killed people, made life worse for refugees, closed ports and airports, and even affected the Syrian civil war. Plus, the storms coincided with a heatwave. Having +100 °F (~40 °C) temperatures, high humidity and not being able to breathe because of the dust sounds awful. Correction: it is awful. And, life goes on in the Middle East.
UPDATE #1 (17 September 2015): Here’s a nice, zoomed-in, animated GIF of the Syrian haboob as seen by the DEBRA dust algorithm, made from MSG-3 images:
Click to view 59 MB Animated GIF
UPDATE #2 (17 September 2015): Steve M. also tipped me off to another – even more impressive – haboob that impacted Iraq at the beginning of the month (31 August – 2 September 2015). Here’s an animation of the DEBRA view of it:
Click to view 28 MB Animated GIF
This dust storm was even seen at night by the Day/Night Band, thanks to the available moonlight:
Look at that cute little swirl. Well, it would be cute if it weren’t so hazardous.
UPDATE #3 (4 October 2021): Here is a link to more information about color blindness, provided by an avid viewer: Everything you need to know about Color Blindness
Bárðarbunga, the Toxic Tourist Trap
Quick: what was the name of that Icelandic volcano that caused such a stir a few years ago? Oh, that’s right. You don’t remember. No one remembers. (Unless you live outside the U.S. in a place where you might have actually heard someone say the name correctly.) To Americans, it will forever be known as “That Icelandic Volcano” or “The Volcano That Nobody Can Pronounce” – even though it is possible to pronounce the name. Say it with me: Eye-a-Fiat-la-yo-could (Eyjafjallajökull).
Well, back at the end of August 2014 another volcano erupted in Iceland, and there is no excuse for not being able to pronounce this name correctly: Bárðarbunga. (OK, you have one excuse: use of the letter ð is uncommon outside of Iceland. In linguistics, ð is a “voiced dental fricative” which, in English, is a voiced “th”. “The” has a voiced “th”. “Theme” has an un-voiced “th” or, rather, “voiceless dental non-sibilant fricative“.) Look, you don’t want to offend any Icelanders, so say it right:
“Bowr-thar-Bunga.” See, it’s easy to say. (You may see people who are afraid of the letter ð refer to the recent eruption as Holuhraun [pronounced “Ho-lu-roin”], because Bárðarbunga is part of the Holuhraun lava field. So be aware of that.)
I know what you’re going to ask: “What is so special about this volcano? I haven’t heard anything about it up to this point, so why should I care?” You haven’t heard anything about it because you don’t live in Iceland or in Europe, which is downwind of Iceland. And, why should you care? Let me count the ways in the rest of this blog post.
You probably have heard of Kīlauea (and have no trouble pronouncing that name) and the lava flow that inched its way towards the town of Pahoa. Kīlauea has been continuously erupting since 1983. Bárðarbunga erupted on 29 August 2014 and has been spewing lava ever since, which at this point, is over 100 days of non-stop erupting. It’s Iceland’s version of Kīlauea. (Hopefully, it won’t continue to erupt for another 30 years.)
Just like Kīlauea, Bárðarbunga is attracting tourists from all over the world. It seems every wannabe photographer and videographer has gone (or wants to go) to Iceland to try to come up with the next viral video showing the breathtaking lava flows. Seriously, do a search for Bardarbunga or Holuhraun on YouTube or vimeo and see how many results show up. Here’s a pretty typical example (filmed by someone from Iceland):
Want to join in the fun? Just grab your camera, head to Iceland, hire an airplane or helicopter pilot, and find the most dramatic music you can think of to go along with your footage. Watch out, though – the airspace around the volcano can be rather crowded. As this video shows, it can be hard to film the volcano without other aircraft getting in the way.
If photography is more your thing, here are the latest images of the eruption on Twitter. (Look for the pictures of Beyonce and Jay-Z. If Twitter is correct, they flew over the volcano for his birthday. Viewing the eruption has gone mainstream! You’re too late, hipsters! Good luck getting to the next volcanic eruption before it becomes cool.)
Back to the matter at hand: why you should care about Bárðarbunga. After its first 100 days of erupting, it has created a field of new lava (76 km2) that is larger than the island of Manhattan (59 km2). The volcano has been creating a toxic plume of SO2 for the last 100 days that is making it difficult to breathe. (Here are some of the known health effects of breathing SO2.) SO2 can ultimately be converted into sulfuric acid (acid rain), depending on the chemistry in the air around the volcano. And while it may not be producing as much ash as Eyjafjallajökull did, VIIRS imagery shows it is producing ash, which is a threat to aircraft.
If you follow this blog, you know the best RGB composite for detecting ash is the True Color composite. This is because the visible wavelength channels that make the composite are sensitive to the scattering of light by small particles, like dust, smoke and ash. Iceland is a pretty cloudy place, so it’s not always easy to spot the ash plume, so here it is at its most visible:
Click on the image (or any other image) to see the full resolution version. The red arrow shows the location of Bárðarbunga. In case you’re wondering, the borders drawn inside the island are IDL’s knowledge of the boundaries of lakes and glaciers (jökull in Icelandic). The big one just south of the red arrow is Vatnajökull – the largest glacier in Europe and one of three national parks in Iceland. (If you want to go there, be aware of closures due to volcanic activity.)
See the ash plume extending from the red arrow to the east-northeast out over the Atlantic Ocean? Now, try to find the ash plume in this animation of True Color images from 29 August to 14 October 2014:
As with most of my animations, I have selectively removed images where it was too cloudy to see anything. Sometimes, the steam from the volcano mixes with the ash to make its own clouds, much like a pyrocumulus. Watch for the ash to get blown to the northwest and then southwest in early October. In case you can’t see it, here’s a static example:
This time, the red arrow shows Reykjavik, the nation’s capitol and likely only city in Iceland you’ve heard of. The ash plume is pretty much right over Reykjavik!
Over the course of the first 100 days, no place in Iceland has been kept safe from the ash plume. But, that’s not the only threat from Bárðarbunga: I also mentioned SO2. If you recall from our look at Copahue (Co-pa-hway – say it right!) the EUMETSAT Dust algorithm is sensitive to SO2. So, can we detect the toxic sulfur dioxide plume from Bárðarbunga? Of course! But, it does depend on cloudiness and just how much (and how high) SO2 is being pumped into the atmosphere.
If you read my post on Copahue, you should have no trouble picking out the sulfur dioxide plume in this image of Bárðarbunga:
This image is from the same time as the first True Color image above, when the plume was very easy to see. Also note the large quantity of contrails (aka “chemtrails” to the easily misled). Those are the linear black streaks west of Iceland. If you’re confident in your ability to see the sulfur dioxide, see how often you can pick it out in this animation:
Some detail is lost because an RGB composite may contain as many as 16 million colors, while the .gif image standard only allows 256. But, you can still see the pastel-colored SO2 plume, which almost looks greenish under certain conditions due to interactions with clouds. Also note the volcano itself appears cyan – the hottest part of the image has a cool color! Unusual in a composite that makes almost everything appear red or pink.
If you want to see the volcano look more like a hot spot, here are animations of the shortwave IR (M-13, 4.0 µm) and the Fire Temperature RGB composite (which I promote whenever I can). I should preface these animations by saying I have not removed excessively cloudy images but, at least 80% of the days have two VIIRS afternoon overpasses and, to reduce filesizes, I have kept only one image per day:
The Fire Temperature RGB is made up of M-10 (1.6 µm; blue), M-11 (2.25 µm; green) and M-12 (3.7 µm; red):
No surprise, molten rock is quite hot! That area of lava has saturated my color table for M-13 and it saturated the Fire Temperature RGB. As I’ve said before, only the hottest fires show up white in the Fire Temperature RGB and lava is among the hottest things you’ll see with VIIRS. Sometimes, you can see the heat from the volcano through clouds (and certainly through the ash plume)! It’s also neat to watch the river of lava extend out to the northeast and then cool.
To quantify it a bit more, the first day VIIRS was able to see the hot spot of Bárðarbunga (31 August 2014), the M-13 brightness temperature was the highest I’ve seen yet: 631.99 K. The other midwave-IR channels (M-12 and I-4; 3.7 and 3.74 µm, respectively) saturate at 368 K. The Little Bear Fire (2012) peaked at 588 K and that fire was hot enough to show up in M-10 (1.6 µm) during the day, so it’s no wonder that we’ve saturated the Fire Temperature RGB.
There’s one more interesting way to look at Bárðarbunga using a new RGB composite. When I was first tipped to this event, I saw this image from NASA, which you can read more about here. That image was taken by the Operational Land Imager (OLI) from Landsat-8 and is a combination of “green, near-infrared and shortwave infrared” channels. Applying this to VIIRS, that combination becomes M-4 (0.55 µm), M-7 (0.87 µm) and M-11 (2.25 µm), which is similar to the Natural Color composite (M-5, 0.64 µm; M-7, 0.87 µm; M-10, 1.61 µm) except for a few notable differences. M-4 is more sensitive to smoke and ash and vegetation than M-5. And M-11 is more sensitive to fires and other hotspots than M-10.
The differences are subtle, but you can see them in this direct comparison:
NASA calls this RGB composite “False Color with Shortwave Infrared,” although I’m sure there has to be a better name. Any suggestions?
Most of my images and loops have come from the first 45 days after eruption. This was a very active period for the volcano, and is where most of the previously mentioned videos came from. (And trust me, you and your browser couldn’t handle the massive animations that would have resulted from using all 100+ days of images.) To prove Bárðarbunga has gone on beyond that, here’s one of the new RGB composites from 17 November 2014:
This image really makes Iceland look like a land of fire and ice, which is exactly what it is!