A Wild Week of Wildfires

The last few weeks have been filled with lightning-ignited wildfires across the United States. The County Line Fire, along the Florida-Georgia border was caused by lightning on 5 April 2012 and burned ~35,000 acres. The Whitewater-Baldy Complex (began 16 May 2012) – the largest wildfire in New Mexico history – started as two different fires (both caused by lightning) that merged together. It’s over 280,000 acres (that’s not a typo) and continues to burn (as of 13 June 2012). The Duck Lake Fire (began 24 May 2012) burned 21,000 acres of Michigan’s Upper Peninsula and was caused by lightning. The Little Bear Fire (began 4 June 2012), also in New Mexico, was caused by lightning and has burned ~37,000 acres.  Much closer to home, the High Park Fire (began 9 June 2012) is already the largest wildfire in Larimer County history and the third largest fire in Colorado history. It has burned ~46,000 acres and I bet you can guess what caused it.

It’s not clear who is to blame here – there is a long list of suspects – but I bet it was Thor. Even though the U.S. is generally the domain of the Thunderbird, Thor has a mountain-crushing hammer called Mjöllnir, which makes him as good a suspect as any. He may have been in cahoots with Indra or Marduk who are the bringers of rain, and have been holding back on us. Look at how dry it has been across the majority of the country.

With all of these fires, it’s hard to know where to begin. We’re going to ignore the County Line Fire as it was put out over a month ago. We’re also going to ignore the Whitewater-Baldy Complex, as it is so big, it can be seen by GOES. (Kidding! We kid because we love.) Plus, it’s been done before. The VIIRS view of the High Park Fire has also been looked at by CIMSS, with an interesting comparison between VIIRS and MODIS.

What we are going to do is show off interesting features of some of these fires that haven’t been shown or discussed before (as far as we know). We begin with “saturation”. Both the High Park Fire and Little Bear Fire saturated the VIIRS 3.7 µm channels (I-04 and M-12):

Channel I-04 image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel I-04 (3.7 µm) image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel M-12 image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel M-12 (3.7 µm) image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel I-04 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel I-04 (3.7 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel M-12 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel M-12 (3.7 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

The top two images are of the Little Bear Fire, which formed near the border of Lincoln and Otero counties in New Mexico. The bottom two images are of the High Park Fire in Larimer County, Colorado. For each fire, the high resolution 3.7 µm channel (I-04) is compared with the moderate resolution 3.7 µm channel (M-12). The colors range from white (cold) to black (hot). But, wait a minute! If white is cold, why are there white pixels mixed in with the black ones that indicate the hot spots? That’s because these channels are saturating and experiencing “fold-over”. The peak brightness temperatures these channels can measure is ~ 367 – 368 K. Anything warmer than that won’t be detected, so the channel is said to be saturated. When it really gets above that limit you can have “fold-over”, where not only are you not observing the higher, correct temperature, the detectors actually report a lower temperature or radiance. In these fires, the fold-over is resulting in brightness temperatures down to 203 K for M-12 and 208 K for I-04, which is about 90-100 K colder than even the area surrounding the fires!

Luckily, VIIRS has a 4.0 µm channel (M-13) that was designed to not saturate at the temperature of typical wildfires. Compare the hottest pixels in the M-13 images below with the fold-over pixels from M-12 and I-04 above:

Channel M-13 image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel M-13 (4.0 µm) image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel M-13 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel M-13 (4.0 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

The hottest pixel in M-13 reached a temperature of 588 K for the Little Bear Fire and 570 K for the High Park Fire – over 200 K warmer than the saturation points of M-12 and I-04!

These fires were so hot, they appeared in channels that don’t usually show a fire signal. Limiting our attention to the High Park Fire (which was almost literally in our back yard), here’s the I-05 (11.5 µm) image from 10 June 2012:

Channel I-05 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel I-05 (11.5 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

The highest temperature observed in I-05 was 380 K. Longer wavelength channels, such as in I-05 are less sensitive to sub-pixel hot spots than channels in the 3.7 – 4.0 µm range, so fires don’t often show up. For pixels to have a 380 K brightness temperature in I-05, it means that the average temperature over the entire pixel had to be above +100 °C – hot enough to boil water!

Fires don’t often show up at shorter wavelengths, either, because the amount of solar radiation usually dwarfs any signal from the Earth’s surface. But, the High Park Fire did reach saturation at 2.25 µm (M-11):

Channel M-11 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel M-11 (2.25 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

The color scale has been reversed so that it is more inline with visible imagery. The white pixels represent saturation in M-11 at a radiance of 38 W m-2 µm-1 sr-1. The reflectance of these pixels saturated at a value of 1.6, which means that the amount of radiation detected in this channel was more than 1.6 times the amount you would expect to see if the surface was a perfect mirror reflecting all the solar radiation back to the satellite. Thus, the fire’s contribution to the total radiance was significant in this channel.

The contribution from the surface (i.e., the fire) was also visible in the 1.6 µm channel (M-10), but it isn’t exciting enough to show. One channel shorter down on VIIRS (M-9, 1.38 µm) and the signal disappears against the high reflectivity of the smoke plume.

It’s impossible to leave out the Day/Night Band, which shows just how large and how close the High Park Fire got to Fort Collins:

Day/Night Band image of the High Park Fire from VIIRS taken 09:58 UTC 11 June 2012

Day/Night Band image of the High Park Fire from VIIRS taken 09:58 UTC 11 June 2012. Image courtesy Dan Lindsey.

The smoke plume, while not exactly visible, is affecting the view of the east side of the fire and Fort Collins, making them appear more blurry than they would if the sky were completely clear. You can also see that, overnight on 11 June 2012, the fire covered an area larger than any of the cities visible in the image (except for Denver, which is mostly cropped off the bottom of the image).

Hopefully, Marduk will start doing his job and bring us some rain and these will be the last fires for a while.

Cape Verde Waves and Plumes

Cape Verde is an island nation off the west coast of Africa, located in the North Atlantic. The islands are a popular initiation point for tropical storms. The original capital of the 10-island archipelago was sacked twice by Sir Francis Drake, the same one who, in his later years, would fail to sack the villages along Lake Maracaibo in Venezuela due to Catatumbo lightning. That guy really got around, and I mean that literally: he circumnavigated the globe between 1577 and 1580, sacking nearly every village and boat he came across. But, this isn’t about Francis Drake – it’s about the Cape Verde islands and the amazing view of them captured by VIIRS.

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 6 June 2012

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012

Can you see the 10 major islands? One of them (Santa Luzia) is almost obscured by clouds. If you click on the image, you’ll see each of the major islands identified. Go ahead and click on it. It will help for later.

The image above was made from the RGB composite of VIIRS high-resolution imagery channels I-01, I-02 and I-03. While it technically is a false color image (uses reflectance at 0.64 µm [blue],  0.865 µm [green] and 1.61 µm [red]), it looks realistic in many situations, so that we refer to it as “pseudo-true color”. Snow and ice show up as an unrealistic blue, however, which is the main difference between it and a “true color” image. You might also notice a few more differences between the “pseudo-true color” image above and the “true color” image below.

True color RGB composite of VIIRS channels M-3, M-4 and M-5 taken 14:41 UTC 6 June 2012

True color RGB composite of VIIRS channels M-3, M-4 and M-5 taken 14:41 UTC 5 June 2012

The true color image uses moderate resolution channels M-3 (0.48 µm, blue), M-4 (0.55 µm, green) and M-5 (0.67 µm, red), which actually observe radiation in the blue, green and red portions of the visible spectrum. Apart from differences in resolution, the vegetation on the islands shows up a bit better in the “pseudo-true color” image. The islands just look brown in the true color image.

What is particularly interesting about these images are the visible effect that the islands have on the local atmosphere. Downwind (southwest, or to the lower left) of Sal, Boa Vista, and Maio, you can see singular cloud streets, much like the flow of water around a rock. In the photograph in that link, you can see how the water dips downward on both sides of the center line downstream of the rock, and upward in the middle (along the center line). The islands are acting like rocks in the atmosphere, causing upward motion behind them, and this lift was enough to form cloud streets. On either side of these cloud streets there is downward motion and, as a result, clear skies.

Downwind of São Nicolau, São Vicente and Santo Antão, the cloud streets highlight von Kármán vortices and vortex shedding, which you can see in more-controlled lab conditions here and here.

Many of the islands appear to be producing their own aerosol plumes (i.e. dust), and if you zoom in on the area between Boa Vista and Santiago, you can see gravity waves present in some of the plumes (highlighted by the arrows in the image below).

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012

A common way to detect dust is the “split-window difference”: the difference in brightness temperature between the 11 µm channel and the 12 µm channel. On VIIRS, this means subtracting M-16 from M-15 which, when you do that, gives you this image:

Split-window difference from VIIRS (M15 minus M16) from 14:41 UTC 5 June 2012

Split-window difference from VIIRS (M15 minus M16) from 14:41 UTC 5 June 2012

The color scale goes from -0.16 K (black) to +4.0 K (white). For some reason, the dust or aerosol plumes don’t produce a strong signal here. It may be that the dust is too low in the atmosphere and the lack of temperature contrast with the surface prevents a strong signal. Maybe water vapor absorption effects in M16 are washing out the signal. Or, there could be some other explanation waiting to be discovered.

The plumes are highly reflective in the 3.7 µm channel (M-12), as are the clouds, which show up as warm spots in the image below (not as warm as the islands, however):

Moderate resolution 3.7 µm image (M-12) from VIIRS, taken 14:14 UTC 5 June 2012

Moderate resolution 3.7 µm image (M-12) from VIIRS, taken 14:41 UTC 5 June 2012

Here, just to throw you off, the color scale has been reversed so that dark colors mean higher values. The scale ranges from 295 K (white) to 330 K (black). When you take the difference of this image and the 10.6 µm brightness temperature (M-15), the clouds and aerosol plumes really show up, along with the gravity waves and vortices:

Brightness temperature difference between VIIRS channels M-12 and M-15 from 14:14 UTC 5 June 2012

Brightness temperature difference between VIIRS channels M-12 and M-15 from 14:41 UTC 5 June 2012

In this case, the M-12 brightness temperatures are always greater than the M-15 brightness temperatures (due to the combination of Earth’s emission and solar reflection in M-12 as opposed to just surface emission in M-15), so the scale varies from +5 K (black) to +30 K (white). Higher (brighter) values on this scale show off where the most solar reflection occurs at 3.7 µm – the liquid clouds and aerosol plumes.

There are much more sophisticated ways of identifying dust and aerosol plumes. To find out more, check out this article written by one of our resident experts, Steve Miller, who is currently working on applying dust detection algorithms to VIIRS.

If you are more interested in the von Kármán vortices, NASA has put together a great page that you can visit here. If you take the original image in this post, zoom out and rotate it a little bit, you can get a sense of just how far the vortices extend from their parent islands:

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012. This image has been rotated from the previous images to highlight the length of the vortex streets.

Coincidentally, this image has been cropped to a size that makes it suitable for use as a desktop wallpaper, should you happen to have a 16:9-ratio monitor and a desire to stare at this image all day. (You have to click on the image, then click on the “1920 x 1080” link below the header to get the full resolution image.)

I- and M- Band Views of the Heartstrong Fire

The Heartstrong Fire in Yuma County, Colorado, 18 March 2012

The Heartstrong Fire in Yuma County, Colorado, 18 March 2012 (uncredited photo)

On 18 March 2012, very warm, very dry and very windy conditions existed throughout eastern Colorado. Surface observations showed temperatures in the 70s and 80s, dew points in the teens and 20s, and sustained winds at 20-30 knots (gusting over 40 knots). Wind gusts up to 60 knots (~70 mph) were reported.

Surface observations, 19:00 UTC 18 March 2012

Surface observations, 19:00 UTC 18 March 2012 (courtesy UCAR)

A red flag warning was issued for nearly all of eastern Colorado. And with good reason! A grass fire started in Yuma County, CO (which borders Nebraska and Kansas) in the early afternoon, and quickly grew out of control. The media dubbed it the Heartstrong Fire. An area 14 x 16 miles had to be evacuated, although only 2400 acres actually burned. The smoke plume was easily visible from the Goodland, KS, National Weather Service radar. Two homes were destroyed, and three firefighters were injured battling the blaze.

Radar image of smoke from the Heartstrong Fire, 21:17 UTC 18 March 2012

Radar image of smoke from the Heartstrong Fire seen by the Goodland, KS, NWS radar, 21:17 UTC 18 March 2012 (courtesy UCAR)

"True Color" image of the Heartstrong Fire, 19:34 UTC 18 March 2012

"True Color" image (RGB composite of VIIRS channels M3, M4 and M5) of the Heartstrong Fire, 19:34 UTC 18 March 2012

Even though cirrus clouds covered the area (as seen in the true color image above), VIIRS observed the fire in its two 3.7 µm channels. The VIIRS images shown here, from 19:34 UTC, were taken roughly 20 minutes after the fire was first reported. The moderate resolution band M-12 (centered at 3.7 µm) identifies a hot spot (which shows up as black in the image below) that is approximately 6 pixels by 3 pixels. With ~750 m resolution at nadir in this band, that corresponds to a total area of 10.2 km² of pixels that contain a fire signal.

Image of the Heartstrong Fire from VIIRS channel M-12, 19:34 UTC 18 March 2012

Image of the Heartstrong Fire from VIIRS channel M-12, 19:34 UTC 18 March 2012

The high resolution imagery band I-4 (centered at 3.74 µm) also identifies the hot spot. In this case it is approximately 11 pixels by 5 pixels in size. At ~375 m resolution at nadir, this corresponds to an area of 7.7 km² of pixels that contain a fire signal.

Image of the Heartstrong Fire  from VIIRS channel I-4, 19:34 UTC 18 March 2012

Image of the Heartstrong Fire (indicated by the red arrow) from VIIRS channel I-4, 19:34 UTC 18 March 2012

Thus, the difference in resolution between these two channels leads to a difference in the apparent size of the hot spot as seen by satellites. However, it should be noted that this apparent size is only an estimate of the size of the hot spot visible in the satellite image, not the actual size of the fire. Fires move in narrow flame fronts that cover only a small percentage of the pixel area. From a firefighting perspective, detecting which pixels actually contain fire and where the actual burning occurs within those pixels are two different things.

Of additional interest is the difference in observed brightness temperatures between these two channels. The warmest pixel in M-12 was 327 K, while the warmest pixel in I-4 was 342 K. As the observed brightness temperature is related to the fraction of each pixel covered by fire, the higher resolution images produce higher brightness temperatures in the hot spot.

This means that, to a human observer, the hot spot appears larger in the M-band image, while, from an automated algorithm point-of-view, the I-band image has a larger number of pixels within the hot spot, and higher brightness temperatures. The difference in the appearance of the hot spot between these channels is more clearly seen in the figure below. Be sure to click on the image, and then look for the “1700×702” link above the image title and click on that to see the comparison in its highest quality.

Comparison between the I-4 and M-12 views of the Heartstrong Fire

Comparison between the I-4 and M-12 views of the Heartstrong Fire. The previous I-4 and M-12 images (taken at 19:34 UTC, 18 March 2012) have been zoomed in for additional clarity.

As an additional note, band M-13 (centered at 4.05 µm) is the primary band used in active fire detection. This band was designed specifically to measure the radiative signal of hot spots without sensor saturation. The M-13 image of the fire is shown below.

Image of the Heartstrong Fire taken by VIIRS band M-13, 19:34 UTC 18 March 2012

Image of the Heartstrong Fire from VIIRS channel M-13, 19:34 UTC 18 March 2012

There is a dedicated team of researchers actively exploring fire detection from VIIRS. You can learn more about fire detection and the status of their current fire detection products by visiting viirsfire.geog.umd.edu.