OK, so there probably aren’t any “Canadatowns” in China like there are Chinatowns in Canada. (Now you’re probably wondering what a Canadatown in China would look like. Maybe stores and restaurants selling poutine and maple syrup? Hockey rinks and curling sheets everywhere? A Tim Hortons on every street corner?) But this isn’t about that!
Last time I made the comparison between Canada and China, it was because there were numerous fires, particularly in the Northwest Territories, that produced so much smoke that it choked the air, making it difficult to breathe. This smoke was visible all the way down to the Lower 48 United States. These huge smoke plumes looked a lot like Chinese super-smog. Today, we’re talking not about the smoke and smog… well, actually, smoke and smog will be mentioned… hmm. Uh, what I mean is we’re focusing on the zillions of fires that VIIRS saw over Manchuria – just like the zillions of fires in the Northwest Territories. Well, OK, not “just like” – those fires were caused by Mother Nature. These fires appear to be intentionally set by human beings and are much smaller.
A CIRA colleague was checking out a real-time loop of MTSAT 3.75 µm imagery over northeastern China and reported seeing bright spots (which are typically hot spots from fires) throughout the area for most of the last month. So what is going on there?
MTSAT has ~4 km spatial resolution, so it’s not the best for fire detection. (At the time of this writing, CIRA has access to MTSAT-2, aka Himawari-7, which has 4 km spatial resolution in the infrared channels. The Advanced Himawari Imager {AHI} was successfully launched on Himawari-8 on 7 October 2014 and, when the operational imagery becomes available, it will have 2 km resolution in this channel [and it will have many of the channels that VIIRS has]. CIRA has plans to acquire this data when it becomes available. Until then, you’ll have to deal with coarse spatial resolution.) To really see what is going on, you need the spatial resolution of VIIRS.
Of course, spatial resolution is not the only thing you need. Check out the VIIRS M-13 (4.0 µm) image below from 04:48 UTC 18 November 2014. How many hot spots can you see?
This image uses a color table specifically designed to highlight hot spots from fires. Any pixel above 317 K (44 °C or 111 °F) is colored. (As always, click on the image to see it in full resolution.) There aren’t that many colored pixels, even though we’re using a relatively low temperature threshold for fire detection. There are, however, a lot of nearly black pixels, which means they are warmer than the background, but not warm enough to be highlighted. (In case you’re not sure, I’m talking about the area between 45° and 48°N, 123° and 128°E.) If we used this temperature threshold in a summer scene, there would be a lot false alarm fire detections.
A situation like this is when the Fire Temperature RGB composite comes in handy. It can detect the small (or low temperature) fires with no problem, particularly since the background isn’t very warm. Try to count up all the red pixels in this image from the same time:
That’s a lot of fires! It’s probably because there are so many of them that they were visible in MTSAT. If you look closely at the full resolution image, there are two significant fires in North Korea, plus many more smaller fires/hot spots northwest and north of the Yellow Sea. Go back and compare the Fire Temperature RGB with the M-13 image. Admit it: fires in this scene are easier to see in the RGB composite.
If you don’t believe me, check out the M-13 and Fire Temperature RGB images that have been zoomed in on main concentration of fires. The Fire Temperature RGB has been lightened a little bit and the M-13 image has been darkened a little bit to highlight the hot spots better.
If you want to know why the Fire Temperature RGB composite works, go back and read this and this. Otherwise, stay put. If you’re familiar with the Fire Temperature RGB, because you are a loyal follower of this blog, you may be wondering why the overall image looks so dark.
All the previous cases where I’ve shown this RGB have been in the summer, typically under bright sunlight (since fires don’t tend to occur in winter). Here, it’s almost winter so there is less sunlight and the background surface is colder, which are going to make the image appear darker. Plus, there is some snow in the scene and snow appears black in this RGB composite. It’s not reflective at 1.61 µm (blue component) or 2.25 µm (green component) or at 3.74 µm (red component), plus it’s cold so it doesn’t emit much radiation at any of these wavelengths either.
The Natural Color RGB shows where the snow is. Look for the cyan signature of snow and ice here:
The Natural Color RGB shows that the fires are occurring in an area with a lot of lakes. Also, there isn’t a very strong green signature from vegetation in this area. So what is burning? Your guess is as good as mine. (Unless your guess is a bunch of Chinese children using magnifying glasses to burn ants. That’s not a very good guess – particularly because, as I said, there is less sunlight in the winter and it’s colder so the ants wouldn’t ignite easily. Also, that’s a cruel thing to suggest and my reasoned account of why that wouldn’t work should not be taken as an implicit admission that I ever did such a thing as a kid.)
A quick perusal of Google Maps reveals that it is an area full of agricultural fields. So my guess is that it’s some sort of end-of-year burning of agricultural waste. They are all small or low temperature fires and they’re not anything that made the news (I checked), so it’s doubtful that it’s a zillion uncontrolled fires.
How do we even know they’re fires? Besides the fact that they show up in the Fire Temperature RGB, we can also see the smoke. Check out this True Color RGB image and focus on the area where the majority of the fires are occurring:
There are visible smoke plumes right where the greatest concentration of hot spots is located. There is also a long plume of gray along the base of the Changbai Mountains stretching southwest to the shores of the Yellow Sea, but it’s not clear if that is also smoke or simply smog. By the way, if you have respiratory ailments, don’t look at the southwest corner of the image (west of the Yellow Sea) because that’s definitely smog! The northern extent of that large area of smog is the Beijing metropolitan area.
What is most cough- and barf- inducing about that smog near Beijing is that it is thick enough to completely obscure the view of the surface. Last time we looked at that, it was record levels of smog that was receiving international attention. The thick, surface obscuring smog you see here isn’t record breaking or news-worthy – it’s simply a normal late fall day in eastern China!
If you can’t think of anything else to be thankful for on Thursday, you can be thankful that you don’t have to breathe air like that. Unless you live there. But, then, you wouldn’t be celebrating Thanksgiving anyway. And, if you live in Canada, you already had your Thanksgiving. You get to just sit back, relax, and watch Americans trample each other to death for discount electronics. Being able to avoid the Black Friday mob is something to be truly thankful for!