Remote Islands VI: Return to Gough

You youngins are not old enough to remember, but we took a look at Gough Island before. Well, not directly, but as part of the British territory of Saint Helena, Ascension and Tristan da Cunha eight years ago. We also did a special feature on Saint Helena and Ascension four years ago. So, why are we re-visiting a group of tiny islands in the middle of the South Atlantic Ocean for a third time? Because of the great view that VIIRS provided earlier this month, and because Gough Island is an interesting place.

For starters, it rhymes with “scoff” and not with “dough” despite the spelling. So now you know. It is also home to one of the more unique jobs in meteorology. It has no permanent residents, but every year a group of 5-10 people are brought in to run the weather station on it for the South African Weather Service and study the biology of the island for the South African National Antarctic Programme (SANAP) even though it is a British island. (At least one member of the team has to be a doctor, since there are no hospitals within 400 km and boats only stop by a couple of times per year.) From the pictures and video, it certainly looks like unique place to spend a year.

Now, on to the interesting satellite imagery. We begin our visit to Gough Island with a loop from Meteosat-11, and its imager, SEVIRI (PDF document):

Note that Meteosat data was provided to NOAA by EUMETSAT and the video above shows their “Enhanced” Natural Color RGB. I can also take this opportunity to promote the fact that we are now allowed to share Meteosat imagery on our ultra-popular website, SLIDER, which is where the above loop came from.

Credits and advertising out of the way, did you see Gough Island? If not, you could try viewing the video in full-screen mode. Or, it might help if I zoomed in on the area, like this:

Meteosat-11 "Enhanced" Natural Color RGB (07-18 UTC, 5 January 2020)

Meteosat-11 “Enhanced” Natural Color RGB (07-18 UTC, 5 January 2020)

The southernmost green dot is Gough Island. The other green dots are Tristan da Cunha, Inaccessible Island, and Nightingale Island. What caught my attention was two things: it’s rare to get such a clear view of these islands and the waves produced by Gough Island clearly impact clouds that never even passed over the island. Of course, having come from SEVIRI, this loop is limited to 3 km resolution (since the HRV band isn’t part of this RGB, and doesn’t normally cover this part of the world).

What if we had 375 m resolution? What would that look like? Well, on VIIRS, it looks like this:

NOAA-20 VIIRS Natural Color RGB composite of channels I-01, I-2 and I-3 (14:38 UTC 5 January 2020)

NOAA-20 VIIRS Natural Color RGB composite of channels I-01, I-2 and I-3 (14:38 UTC 5 January 2020)

Click on the image to view the full resolution. It’s worth it.

It should be noted that I haven’t applied the same “enhanced” version of the Natural Color RGB that removes the cyan color of ice clouds and snow. Another difference is something that you don’t see in the SEVIRI loop: sun glint. That’s because Meteosat-11 isn’t viewing the scene from the same angle as VIIRS.

Look closely downwind (or leeward) of Gough Island and you’ll see from the sun glint that the island is producing waves not only in the atmosphere, but on the surface of the ocean:

Same image as above, only zoomed in on Gough Island

Same image as above, only zoomed in on Gough Island

Of course, if you clicked on the sun glint link, you saw a more extreme example of this, and if you bothered to read the article, you also saw the explanation (written much more succinctly and accurately than I could without plagiarism).

That was only the NOAA-20 view. We also have the Suomi-NPP view, which covered this area before and after NOAA-20. Here are all three views combined:

Animation of VIIRS Natural Color RGB images (5 January 2020)

Animation of VIIRS Natural Color RGB images (5 January 2020)

You have to click on the image above to see the animation play. Now you can see the motion of the clouds, yet the waves are nearly stationary. That’s because they are “tied” to the island that is producing them. This is an example of trapped lee waves. And pilots beware: as this case shows, these waves are present even where there are no clouds to reveal them.

What is perhaps more interesting is that the waves in the ocean show up in the mid-wave infrared (IR) thanks to the sun glint:

S-NPP VIIRS I-04 image (13:46 UTC, 5 January 2020)

S-NPP VIIRS I-04 image (13:46 UTC, 5 January 2020)

This is I-04, the 375 m resolution channel at 3.7 µm, from the first S-NPP overpass (13:46 UTC, 5 January 2020). See the waves on the lee of both Gough Island and Tristan da Cunha? (Tristan da Cunha’s waves aren’t apparent in the clouds. Since these are trapped lee waves, they are occurring below the height of the cirrus clouds to the northwest.) Now, let’s animate the three overpasses:

Animation of VIIRS I-04 images (5 January 2020)

Animation of VIIRS I-04 images (5 January 2020)

The impact of sun glint on the these images, especially the middle one (NOAA-20) is obvious. The last image from S-NPP (15:29 UTC) has no sun glint, so these waves are much harder to spot.

Now check out the high-resolution longwave IR (LWIR) band, I-05 (11.4 µm):

Animation of VIIRS I-05 images (5 January 2020)

Animation of VIIRS I-05 images (5 January 2020)

Pay attention to the change in scaling as revealed by the color table. Three things stand out: with this combination of scaling and color table, you can see structure in the sea surface temperature, the waves downwind of Gough are still visible in the ocean even in the LWIR, and “limb cooling” is something to watch out for.

More detail on the items of note: the sea surface temperature (SST) structure is easier to spot in I-05 because it is not impacted by sun glint. This is because the Earth emits significantly more radiation in the LWIR than what it receives from the sun. In the midwave-IR, the contribution from the sun is significant (as these images show). The waves are still visible in I-05 because the winds on the downward portion of the wave are hitting the ocean surface and modifying the exchange of heat between the atmosphere and the ocean, leading to waves of warmer and cooler SST. And, third, “limb cooling” is the name given to the fact that, at high satellite viewing angles, the path length of the radiation through the atmosphere increases, and more radiation comes from higher up where temperatures are colder. (More on limb cooling may be found on slides 19-21 here.) Look to the clear sky areas on the left edge of the swath on the first I-05 image and compare it to the middle image. Then do the same for the right edge of the swath on the last image. The limb cooling effect is readily apparent.

There’s one more interesting thing from this same scene. Look at the True Color images from these three overpasses:

Animation of VIIRS True Color RGB images (5 January 2020)

Animation of VIIRS True Color RGB images (5 January 2020)

See any variations in the color of the ocean not related to sun glint? That is phytoplankton, a source of life and death in the ocean. In fact, Gough Island’s location, where warmer sub-tropical water mingles with colder mid-latitude water is what makes it such a great nesting site for birds. The fish eat the phytoplankton and the birds eat the fish. Unfortunately, stowaway mice brought to Gough Island by accident are eating the birds.

All that interesting science from one tiny island in the middle of the South Atlantic Ocean.

Ice, Ice, Baby

A winter storm moved through the Northeast U.S. over the weekend of 19-20 January 2019. This Nor’easter was a tricky one to forecast. Temperatures near the coast were expected to be near (or above) freezing. Temperatures inland were expected to be much colder. Liquid-equivalent precipitation, at least according to the GFS, was predicted to be in the 1-3 inch (25-75 mm) range the day before. This could easily convert to 1-2 feet (30-60 cm) of snow. The question on everyone’s mind: who gets the rain, who gets the snow, and who gets the “wintry mix”? The fates of ~40 million people hang in the balance. This is one of the situations that meteorologists live for!

The difference between 71°F and 74°F is virtually meaningless. The difference between 31°F and 34°F (with heavy precipitation, at least) is the difference between closing schools or staying open. It’s the difference between bringing out the plows or keeping them in the garage; paying overtime for power crews to keep the electricity flowing or just another work day; shutting down public transportation or life as usual.

Of course, the obvious follow-up question is: what is the “wintry mix” going to be? Rain mixed with snow? Sleet? Freezing rain? It doesn’t take much to change from one to the other, but there can be a big difference on the resulting impacts based on what ultimately falls from the sky.

So, what happened? Here’s an article that does a good job of explaining it. And, here are PDF files of the storm reports from National Weather Service Forecast Offices in Albany, Boston (actually in Norton, MA) and New York City (actually in Upton, NY). The synopsis: some places received ~1.5 inches (~38 mm) of rain, some places received ~11 inches (~30 cm) of snow and some places were coated in up to 0.6 inches (15 mm) of ice.

Of particular relevance here are the locations that received the ice. If you took the locations listed in the storm reports that had more than 0.1 inches (2.5 mm) of ice (at least the ones in Connecticut) and plotted them on a map, they match up quite well with this map of power outages that came from the article I linked to:

Map of power outages in Connecticut as a result of an ice storm (19-20 January 2019)

Map of power outages in Connecticut as a result of an ice storm (19-20 January 2019). Image courtesy Eversource/NBC Connecticut.

Now, compare that map with this VIIRS image from 22 January 2019 (after the clouds cleared out):

VIIRS channel I-3 image from NOAA-20, 17:09 UTC 22 January 2019

VIIRS channel I-3 image from NOAA-20, 17:09 UTC 22 January 2019

As always, you can click on the image to bring up the full resolution version. This is the high-resolution imagery band, I-3, centered at 1.6 µm from NOAA-20. Notice that very dark band stretching from northern New Jersey into northern Rhode Island? That’s where the greatest accumulation of ice was. Notice how well it matches up with the known power outages across Connecticut!

The ice-covered region appears dark at 1.6 µm because ice is very absorbing at this wavelength and, hence, it’s not very reflective. And, since it is cold, it doesn’t emit radiation at this wavelength either (at least, not in any significant amount). This is especially true for pure ice, as was observed here (particularly the second image), since there aren’t any impurities in the ice to reflect radiation back to the satellite. The absorbing nature of snow and ice compared with the reflective nature of liquid clouds is what earned this channel the nickname “Snow/Ice Band” (PDF).

At shorter wavelengths (less than ~ 1 µm), ice and snow are reflective. (Note how a coating of ice makes everything sparkle in the sunlight.) This makes it nearly impossible to tell where the ice accumulation was in True Color images:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 from NOAA-20, 17:09 UTC 22 January 2019

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 from NOAA-20, 17:09 UTC 22 January 2019

The Natural Color RGB (which the National Weather Service forecasters know as the Day Land Cloud RGB (PDF file)) includes the 1.6 µm band, which is what makes it useful for discriminating clouds from snow and ice. And, as expected, the region of ice accumulation does show up (although it is tempered by the highly reflective nature of snow and ice in the visible and “veggie” bands that make up the other components of the RGB):

VIIRS Natural Color RGB composite of channels, I-1, I-2 and I-3 from NOAA-20 (17:09 UTC, 22 January 2019)

VIIRS Natural Color RGB composite of channels, I-1, I-2 and I-3 from NOAA-20 (17:09 UTC, 22 January 2019)

Another RGB composite popular with forecasters is the Day Snow/Fog RGB (PDF file), where blue is related to the brightness temperature difference between 10.7 µm and 3.9 µm, green is the 1.6 µm reflectance, and red is the reflectance at 0.86 µm (the “veggie” band). This shows the region of ice even more clearly than the Natural Color RGB:

VIIRS Day Snow/Fog RGB composite of channels (I-5 - I-4), I-3 and I-2 from NOAA-20 (17:09 UTC, 22 January 2019)

VIIRS Day Snow/Fog RGB composite of channels (I-5 minus I-4), I-3 and I-2 from NOAA-20 (17:09 UTC, 22 January 2019)

Breaking things up into the individual components, we can see how the ice transitions from being reflective in the visible and near-infrared (near-IR) to absorbing in the shortwave-IR:

VIIRS high-resolution visible channel, I-1, from NOAA-20 (17:09 UTC, 22 January 2019)

VIIRS high-resolution visible channel, I-1 (0.64 µm), from NOAA-20 (17:09 UTC, 22 January 2019)

VIIRS high-resolution "veggie" channel, I-2, from NOAA-20 (17:09 UTC, 22 January 2019)

VIIRS high-resolution “veggie” channel, I-2 (0.86 µm), from NOAA-20 (17:09 UTC, 22 January 2019)

VIIRS channel M-8 from NOAA-20 (17:09 UTC, 22 January 2019)

VIIRS channel M-8 (1.24 µm) from NOAA-20 (17:09 UTC, 22 January 2019)

VIIRS channel M-11  from NOAA-20 (17:09 UTC, 22 January 2019)

VIIRS channel M-11 (2.25 µm) from NOAA-20 (17:09 UTC, 22 January 2019)

Of course, the 1.6 µm image was already shown, so I didn’t bother to repeat it. If you squint, you can even see a hint of the ice signature at 1.38 µm, the “Cirrus Band“, where most of the surface signal is blocked by water vapor absorption in the atmosphere:

VIIRS "cirrus" channel, M-9, from NOAA-20 (17:09 UTC 22 January 2019)

VIIRS “cirrus” channel, M-9 (1.38 µm), from NOAA-20 (17:09 UTC 22 January 2019)

If the ice had accumulated in southern New Jersey or Pennsylvania, though, it would not have shown up in this channel, since the air was too moist at this time to see all the way down to the surface. But, you can compare this image with the previous images to see why they call it the “cirrus band”, since the cirrus does show up much more clearly here.

So, mark this down as another use for VIIRS: detecting areas impacted by ice storms. And remember, even though ice storms may have a certain beauty, they are also dangerous. And, not just for the obvious reasons. This storm in particular came complete with ice missiles. So, for the love of everyone else on the road, scrape your car clean of ice before risking your life out there!

On the Disappearance of Lake Mille Lacs

Two weeks ago, one of Minnesota’s 10,000 lakes disappeared, leaving them with only 9,999. And, it wasn’t a small one, either. It was the state’s second largest inland lake. But, this is not like Goose Lake, which actually did dry up. The lake in question simply became temporarily invisible. So, no need to panic, fishing and boating enthusiasts. But, as you’ll see, the term “invisible” can be just as ambiguous as the term “lake”.

Let’s start with the fact that Minnesota doesn’t have 10,000 lakes. Their slogan is a lie! Depending on how you define a lake, Minnesota has 21,871, or 15,291, or 11,842. But, Wisconsin might have more (or less) and likes to argue with Minnesota about that fact. Michigan might have way more (62,798) or way less (6,537). And, they all pale in comparison to the number of lakes in Alaska. Here is an article that explains the situation nicely.

With that out of the way, today’s story comes from “current GOES” and what one colleague noticed during a cursory examination of GOES Imager images. Here’s the GOES-13 visible image from 19:30 UTC 27 January 2017:

GOES-13 visible image, taken 19:30 UTC 27 January 2017

GOES-13 visible image, taken 19:30 UTC 27 January 2017

Compare that with the visible image from 19:15 UTC 2 February 2017:

GOES-13 visible image, taken 19:15 UTC 2 February 2017

GOES-13 visible image, taken 19:15 UTC 2 February 2017

Notice anything different between the two images over Minnesota? No? Then let’s flip back-and-forth between the two, with a giant, red arrow pointing to the area in question:

Animation of the above images

Animation of the above images. The red arrow points to Lake Mille Lacs.

The red arrow is pointing to the location of Lake Mille Lacs. You might know it as Mille Lacs Lake. (Either way, it’s name is redundant; “Mille Lacs” is French for “Thousand Lakes,” making it Thousand Lakes Lake.) As the above images show, on 27 January 2017 Lake Mille Lacs was not visible in the GOES image. On 2 February 2017, it was. They both look like clear days, so what happened? Why did Lake Mille Lacs disappear?

As I said before, the lake didn’t dry up. It simply became temporarily invisible. But, this requires a discussion about what it means to be “visible”. Lake Mille Lacs shows up in the image from 2 February 2017 because it appears brighter than the surrounding land. That’s because the lake is covered with snow. Aren’t the surrounding land areas also covered with snow? Yes. However, the surrounding lands also have trees which obscure the snow and shade the background surface, which is why forested areas appear darker even when there is snow.

That leads to this question: why does the lake appear darker on 27 January? Because it rained the week before. Want proof? Look at the almanac for Brainerd (NW of Lake Mille Lacs) for the period of 18-22 January 2017. Every day made it above freezing along with several days of rain. Much of the snow melted (including the snow on the lake). Want more proof? Here’s a video taken on the lake from 20 January 2017. See how Minnesotans drive around on frozen lakes – even in the rain? And, see how wet and slushy the surface of the ice is? This makes it appear darker than when there is fresh snow on top. If you’ve ever seen a pile of slush, you know it’s not bright white, but a dull gray color. The less reflective slush on the lake reduced the apparent brightness down to the level of the surrounding woodlands. That’s why the lake appeared to disappear.

Now, this is “current GOES” imagery. We can do better with VIIRS, since we have more channels to play with. And, as we all know, GOES-R successfully launched back in November 2016 and is now in orbit as GOES-16. This satellite has the first Advanced Baseline Imager (ABI) in space. The ABI has many of the same channels as VIIRS, so the following discussion applies to both instruments. “New” GOES will have up to 500 m resolution in the visible, which is much closer to VIIRS (375 m) than “current” GOES (1 km). That’s another thing to think about when we talk about what is visible and what isn’t.

Here are the VIIRS high-resolution visible (I-1) images that correspond to the GOES images above:

VIIRS high-resolution visible (I-1) image, taken 19:35 UTC 27 January 2017

VIIRS high-resolution visible (I-1) image, taken 19:35 UTC 27 January 2017

VIIRS high-resolution visible (I-1) image, taken 19:22 UTC 2 February 2017

VIIRS high-resolution visible (I-1) image, taken 19:22 UTC 2 February 2017

Although, we should probably focus on Minnesota. Here are the cropped images side-by-side:

Comparison between VIIRS high-resolution visible (I-1) images

Comparison between VIIRS high-resolution visible (I-1) images

Remember: you can click on any image to bring up the full resolution version.

Although Lake Mille Lacs is just barely visible in the image from 27 January, it’s much easier to see on 2 February. So, we get the same story from VIIRS that we got with GOES, which is good. That means we don’t have a major fault of a multi-million dollar satellite. It’s a “fault” of the radiative properties of slush, combined with the low resolution of the GOES images above.

Keep your eyes also on the largest inland lake in Minnesota: Red Lake. The Siamese twins of Upper and Lower Red Lake didn’t get as much rain as Lake Mille Lacs and its snow never fully melted, so its appearance doesn’t change much between the two images.

The GOES Imager also has a longwave infrared (IR) channel, and a mid-wave IR channel similar to VIIRS. Since the goal of this is not to compare GOES to VIIRS, but to show how these lakes appear at different wavelengths, we’ll stick to the VIIRS images. Here are the high-resolution VIIRS longwave IR images from the same times:

Comparison of VIIRS high-resolution longwave IR (I-5) images

Comparison of VIIRS high-resolution longwave IR (I-5) images

In both images, the lakes are nearly invisible! This is because the longwave IR is primarily sensitive to temperature changes, and the slush is nearly the same temperature as the background land surface. With no temperature contrast to key on, the lake looks just like the surrounding land. Although, if you zoom in and squint, you might say that Lake Mille Lacs is actually more visible in the image from 27 January. 27 January was a warmer day (click back on that Brainerd almanac), and the surrounding land warmed up more than the slushy ice on the lake. 2 February was much colder on the lake and the land. But, let this be a lesson that, just because the lake doesn’t show up, it doesn’t mean the lake doesn’t exist!

Something interesting happens when you look at the mid-wave IR. All the lakes are visible, and take on a similar brightness, no matter how slushy they are:

Comparison of VIIRS high-resolution mid-wave IR (I-4) images

Comparison of VIIRS high-resolution mid-wave IR (I-4) images

In this wavelength range, both reflection of solar energy and thermal emission are important. Snow, ice and slush are not reflective and they are cold, making the lakes appear darker than the surrounding land. The fact that the land surrounding Lake Mille Lacs and Red Lake is darker on 2 February than it is on 27 January is further proof that it was a colder day with more snow on the ground.

Here’s where we get to the advantage of VIIRS (and, soon, GOES-16): it has more channels in the shortwave and near-IR. The 1.6 µm “snow and ice” band has a lot of uses, and I expect it will be a popular channel on the ABI. Here’s what the high-resolution channel looks like from VIIRS:

Comparison of VIIRS high-resolution near-IR (I-3) images

Comparison of VIIRS high-resolution near-IR (I-3) images

Compare these with the visible images above. Now, the reverse is true: Lake Mille Lacs is easier to see in the first image than the second! You can’t call it invisible at all on 27 January! The presence of liquid water makes the slush very absorbing – more than even ice and snow – so it appears nearly black. In fact, it’s hard to tell the difference between the slushy ice-covered Lake Mille Lacs, and the open waters of Lake Superior, which has no ice or slush on it. On 2 February, we see the fresh layer of snow on Lake Mille Lacs has increased the lake’s reflectivity, but it’s still slightly darker than the surrounding snow covered land. This is for two reasons: snow and ice are absorbing at 1.6 µm and the surrounding woodlands are more reflective.

Here’s a better comparison between the “visible” and the “snow and ice” bands:

Comparison of VIIRS I-1 and I-3 images (animation)

Comparison of VIIRS I-1 and I-3 images (animation)

You’ll have to click on the image to see it animate between the two.

Here’s an animation showing all five high-resolution bands on VIIRS for the two days:

Comparison of VIIRS high-resolution imagery channels (animation)

Comparison of VIIRS high-resolution imagery channels (animation)

Again, you have to click on it to see it animate.

Now, we can combine channels into RGB composites that highlight the snow and ice. We’ve discussed several RGB composites for snow detection before. And, we have been looking at the Natural Color RGB for a long time. This composite combines the high-resolution bands I-1 (0.64 µm), I-2 (0.86 µm) and I-3 (1.6 µm) as the blue, green and red components of the image, respectively. Here’s what it looks like for these two days:

Comparison of VIIRS Natural Color RGB composites

Comparison of VIIRS Natural Color RGB composites using high-resolution imagery bands

Lake Mille Lacs is visible on both days – first because it’s darker than the surroundings, then because it’s brighter. This composite demonstrates how vegetation can obscure the surface snow – it appears more brown in deciduous forests (and bare fields with no snow) and green in coniferous areas. But, the important point is that the wetter the snow and slush, the darker it appears. The fresher the snow, the brighter cyan color it has.

This is exaggerated in the “Snow RGB” that combines moderate resolution bands M-11 (2.25 µm), M-10 (1.6 µm) and M-7 (0.86 µm):

Comparison of VIIRS "Snow RGB" composites of channels M-11, M-10 and M-7

Comparison of VIIRS “Snow RGB” composites of channels M-11, M-10 and M-7

M-11 (2.25 µm) is sold as a “cloud particle size” band, but it also helps with snow and ice detection (and fires). The presence of water in melting snow enhances the darkening at 2.25 µm. In this RGB, that means melting snow appears more red, while fresh snow appears more pink. The slush on Lake Mille Lacs appears very dark – almost as dark as Lake Superior – so a Minnesotan might be forgiven if they see the image from 27 January and decide not to drive out on the lake to go ice fishing because they think the ice isn’t there.

Of course, VIIRS also gives us the True Color RGB – the most intuitive RGB composite – that combines the blue-, green- and red-wavelength visible bands: M-3 (0.48 µm), M-4 (0.55 µm) and M-5 (0.67 µm). If you’re curious, here’s what that looks like:

Comparison of VIIRS True Color RGB composite images

Comparison of VIIRS True Color RGB composite images

The slush on Lake Mille Lacs looks just like dirty slush and the fresh snow looks just like snow. (As it should!)

So, the second biggest lake in Minnesota never disappeared – it just changed its surface properties. And, it will always be “visible” to VIIRS in one channel or another – unless it’s cloudy (or it completely dries up).

December Fluff

By now, you probably know the drill: a little bit of discussion about a particular subject, throw in a few pop culture references, maybe a video or two, then get to the good stuff – high quality VIIRS imagery. Then, maybe add some follow-up discussion to emphasize how VIIRS can be used to detect, monitor, or improve our understanding of the subject in question. Not today.

You see, VIIRS is constantly taking high quality images of the Earth (except during orbital maneuvers or rare glitches). There isn’t enough time in a day to show them all, or go into a detailed discussion as to their relevance. And, nobody likes to read that much anyway. So, as we busily prepare for the upcoming holidays, we’re going to skip the in-depth discussion and get right to the good stuff.

Here then is a sample of interesting images taken by VIIRS over the years that weren’t featured on their own dedicated blog posts. Keep in mind that they represent the variety of topics that VIIRS can shed some light on. Many of these images represent topics that have already been discussed in great detail in previous posts on this blog. Others haven’t. It is important to keep in mind… See, I’m starting to write too much, which I said I wasn’t going to do. I’ll shut up now.

Without further ado, here’s a VIIRS Natural Color image showing a lake-effect snow event that produced a significant amount of the fluffy, white stuff back in November 2014:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

As always, click on the image to bring up the full resolution version. Did you notice all the cloud streets? How about the fact that the most vigorous cloud streets have a cyan color, indicating that they are topped with ice crystals? The whitish clouds are topped with liquid water and… Oops. I’m starting to discuss things in too much detail, which I wasn’t going to do today. Let’s move on.

Here’s another Natural Color RGB image using the high-resolution imagery bands showing a variety of cloud streets and wave clouds over the North Island of New Zealand:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

Here’s a Natural Color RGB image showing a total solar eclipse over Scandinavia in 2015:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

Here’s a VIIRS True Color image and split-window difference (M-15 – M-16) image showing volcanic ash from the eruption of the volcano Sangeang Api in Indonesia in May 2014:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 - M-16) image (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 – M-16) image (06:20 UTC 31 May 2014)

Here’s a VIIRS True Color image showing algae and blowing dust over the northern end of the Caspian Sea (plus an almost-bone-dry Aral Sea):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

Here is a high-resolution infrared (I-5) image showing a very strong temperature gradient in the Pacific Ocean, off the coast of Hokkaido (Japan):

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

The green-to-red transition just southeast of Hokkaido represents a sea surface temperature change of about 10 K (18 °F) over a distance of 3-5 pixels (1-2 km). This is in a location that the high-resolution Natural Color RGB shows to be ice- and cloud-free:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

Here’s a high-resolution infrared (I-5) image showing hurricanes Madeline and Lester headed toward Hawaii from earlier this year:

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

Here are the Fire Temperature RGB (daytime) and Day/Night Band (nighttime) images of a massive collection of wildfires over central Siberia in September 2016:

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

Here is a 5-orbit composite of VIIRS Day/Night Band images showing the aurora borealis over Canada (August 2016):

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Here is a view of central Europe at night from the Day/Night Band:

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

And, finally, for no reason at all, here’s is a picture of Spain wearing a Santa hat (or sleeping cap) made out of clouds:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

There you have it. A baker’s ten examples showing a small sample of what VIIRS can do. No doubt it will be taking more interesting images over the next two weeks, since it doesn’t stop working over the holidays – even if you and I do.

UHF/VHF

Take a second to think about what would happen if Florida was hit by four hurricanes in one month.

Would the news media get talking heads from both sides to argue whether or not global warming is real by yelling at each other until they have to cut to a commercial? Would Jim Cantore lose his mind and say “I don’t need to keep standing out here in this stuff- I quit!”? Would we all lose our minds? Would our economy collapse? (1: yes. 2: every man has his breaking point. 3: maybe not “all”. 4: everybody panic! AHHH!)

It doesn’t have to just be Florida. It could be four tropical cyclones making landfall anywhere in the CONUS (and, maybe, Hawaii) in a 1-month period. The impact would be massive. But, what about Alaska?

Of course, Alaska doesn’t get “tropical cyclones” – it’s too far from the tropics. But, Alaska does get monster storms that are just as strong that may be the remnants of tropical cyclones that undergo “extratropical transition“. Or, they may be mid-latitude cyclones or “Polar lows” that undergo rapid cyclogenesis. When they are as strong as a hurricane, forecasters call them “hurricance force” (HF) lows. And guess what? Alaska has been hit by four HF lows in a 1-month period (12 December 2015 – 6 January 2016).

With very-many HF lows, some of which were ultra-strong, we might call them VHF or UHF lows. (Although, we must be careful not to confuse them with the old VHF and UHF TV channels, or the Weird Al movie.) In that case, let’s just refer to them as HF, shall we?

The first of these HF storms was a doozy – tying the record for lowest pressure ever in the North Pacific along with the remnants of Typhoon Nuri. Peak winds with system reached 122 mph (106 kt; 196 k hr-1; 54 m s-1) in Adak, which is equivalent to a Category 2 hurricane!

Since Alaska is far enough north, polar orbiting satellites like Suomi-NPP provide more than 2 overpasses per day. Here’s an animation from the VIIRS Day/Night Band, one of the instruments on Suomi-NPP:

Animation of VIIRS Day/Night Band images of the Aleutian Islands (12-14 December 2015)

Animation of VIIRS Day/Night Band images of the Aleutian Islands (12-14 December 2015).

It’s almost like a geostationary satellite! (Not quite, as I’ll show later.) This is the view you get with just 4 images per day. (The further north you go, the more passes you get. The Interior of Alaska gets 6-8 passes, while the North Pole itself gets all 15.) Seeing the system wrap up into a symmetric circulation would be a thing of beauty, if it weren’t so destructive. Keep in mind that places like Adak are remote enough as it is. When a storm like this comes along, they are completely isolated from the rest of Alaska!

Here’s the same animation for the high-resolution longwave infrared (IR) band (I-5, 11.5 µm):

Animation of VIIRS I-5 images of the Aleutian Islands (12-14 December 2015)

Animation of VIIRS I-5 images of the Aleutian Islands (12-14 December 2015).

I’ve mentioned Himawari before on this blog. Well, Himawari’s field of view includes the Aleutian Islands. Would you like to see how this storm evolved with 10 minute temporal resolution? Of course you would.

Here is CIRA’s Himawari Geocolor product for this storm:

Here is a loop of the full disk RGB Airmass product applied to Himawari. Look for the storm moving northeast from Japan and then rapidly wrapping up near the edge of the Earth. This is an example of something you can’t do with VIIRS, because VIIRS does not have any detectors sensitive to the 6-7 µm water vapor absorption band, which is one of the components of the RGB Airmass product. The RGB Airmass and Geocolor products are very popular with forecasters, but they’re too complicated to go into here. You can read up on the RGB Airmass product here, or visit my collegue D. Bikos’ blog to find out more about this storm and these products.

You might be asking how we know what the central pressure was in this storm. After all, there aren’t many weather observation sites in this part of the world. The truth is that it was estimated (in the same way the remnants of Typhoon Nuri were estimated) using the methodology outlined in this paper. I’d recommend reading that paper, since it’s how places like the Ocean Prediction Center at the National Weather Service estimate mid-latitude storm intensity when there are no surface observations. I’ll be using their terminology for the rest of this discussion.

Less than 1 week after the first HF storm hit the Aleutians, a second one hit. Unfortunately, this storm underwent rapid intensification in the ~12 hour period where there were no VIIRS passes. Here’s what Storm #2 looked like in the longwave IR according to Himawari. And here’s what it looked like at full maturity according to VIIRS:

VIIRS DNB image (23:17 UTC 18 December 2015)

VIIRS DNB image (23:17 UTC 18 December 2015).

VIIRS I-5 image (23:17 UTC 18 December 2015)

VIIRS I-5 image (23:17 UTC 18 December 2015).

Notice that this storm is much more elongated than the first one. Winds with this one were only in the 60-80 mph range, making it a weak Category 1 HF low.

Storm #3 hit southwest Alaska just before New Year’s, right at the same time the Midwest was flooding. This one brought 90 mph winds, making it a strong Category 1 HF low. This one is bit difficult to identify in the Day/Night Band. I mean, how many different swirls can you see in this image?

VIIRS DNB image (13:00 UTC 30 December 2015)

VIIRS DNB image (13:00 UTC 30 December 2015).

(NOTE: This was the only storm of the 4 to happen when there was moonlight available to the DNB, which is why the clouds appear so bright. The rest of the storms were illuminated by the sun during the short days and by airglow during the long nights.) The one to focus on is the one of the three big swirls closest to the center of the image (just above and right of center). It shows up a little better in the IR:

VIIRS I-5 image (13:00 UTC 30 December 2015)

VIIRS I-5 image (13:00 UTC 30 December 2015).

The colder (brighter/colored) cloud tops are the clue that this is the strongest storm, since all three have similar brightness (reflectivity) in the Day/Night Band. If you look close, you’ll also notice that this storm was peaking in intensity (reaching mature stage) right as it was making landfall along the southwest coast of Alaska.

Storm #4 hit the Aleutians on 6-7 January 2016 (one week later), and was another symmetric/circular circulation. This storm brought winds of 94 mph (2 mph short of Category 2!) The Ocean Prediction Center made this animation of its development as seen by the Himawari RGB Airmass product. Or, if you prefer the Geocolor view, here’s Storm #4 reaching mature stage. But, this is a VIIRS blog. So, what did VIIRS see? The same storm at higher spatial resolution and lower temporal resolution:

Animation of VIIRS DNB images of the Aleutian Islands (6-7 January 2016)

Animation of VIIRS DNB images of the Aleutian Islands (6-7 January 2016).

Animation of VIIRS I-5 images of the Aleutian Islands (6-7 January 2016)

Animation of VIIRS I-5 images of the Aleutian Islands (6-7 January 2016).

This storm elongated as it filled in and then retrograded to the west over Siberia. There aren’t many hurricanes that do that after heading northeast!

So, there you have it: 4 HF lows hitting Alaska in less than 1 month, with no reports of fatalities (that I could find) and only some structural damage. Think that would happen in Florida?