Time-lapse of the Lower North Fork Fire

On 26 March 2012, strong winds, high temperatures and low humidities re-ignited embers from a controlled burn that took place the previous week near Conifer, CO. The Lower North Fork fire quickly spread in the high winds, eventually burning more than 4000 acres and damaging or destroying 27 homes. Three people were killed, presumably because they were unable to evacuate before their homes were engulfed in flame. One family’s daring escape from the fire was caught on a cell phone camera and made national news (CAUTION: strong language has not been edited out). Many interesting pictures of the fire may be found here, here, and here.

Channel I-4 of VIIRS (centered at 3.74 µm) captured the hot spot from the Lower North Fork fire on each of Suomi-NPP’s afternoon (ascending) overpasses last week. These images make up the loop shown below.

5-day loop of I-4 images of the Lower North Fork fire

5-day loop of afternoon I-4 images of the Lower North Fork fire

In this image loop, the color scale represents observed brightness temperature such that warmer pixels appear darker and cooler pixels appear lighter. Pixels warmer than 330 K appear black, and pixels colder than 250 K appear white. The time between each image in the loop is approximately 24 hours.

The first image in the loop, taken at 20:24 UTC on the 26th, captured the hot spot shortly after the fire was first reported. The hot spot as seen by I-4 expanded significantly during the first 24 hours, before lighter winds and firefighting efforts greatly limited the growth of the fire. Over the last three frames, the hot spot can be seen to cool and shrink slightly.

Low (liquid) clouds can be seen as dark splotches on the images from the 28th and 29th of March, which should not be confused with fires. This is due to the fact that liquid clouds are highly reflective at 3.7 µm, and the reflection of solar radiation during the day increases the observed brightness temperature, so they appear darker. The persistently bright sideways “C” shape to the northeast of the fire is Chatfield Reservoir, which has a low brightness temperature due to the low water temperature in the reservoir and the relatively low emissivity of liquid water at this wavelength. Cherry Creek Reservoir (to the northeast of Chatfield Reservoir) and Marston Lake (to the north of Chatfield Reservoir) can also be seen.

With clear skies, the burn area shows up quite clearly in the I-band false color RGB composite of I-1, I-2 and I-3, taken at 20:06 UTC 27 March 2012 – the same time as the second frame of the loop above.

RGB composite of VIIRS channels I-1, I-2 and I-3 of the Lower North Fork fire, 20:06 UTC 27 March 2012

RGB composite of VIIRS channels I-1, I-2 and I-3 of the Lower North Fork fire, 20:06 UTC 27 March 2012

The burn area shows up as a sizeable dark brown spot in the forests (which show up as green) southwest of Denver.

After the driest and warmest March on record in Denver, hopefully this is not the start of a long, devastating fire season (link goes to PDF file).

I- and M- Band Views of the Heartstrong Fire

The Heartstrong Fire in Yuma County, Colorado, 18 March 2012

The Heartstrong Fire in Yuma County, Colorado, 18 March 2012 (uncredited photo)

On 18 March 2012, very warm, very dry and very windy conditions existed throughout eastern Colorado. Surface observations showed temperatures in the 70s and 80s, dew points in the teens and 20s, and sustained winds at 20-30 knots (gusting over 40 knots). Wind gusts up to 60 knots (~70 mph) were reported.

Surface observations, 19:00 UTC 18 March 2012

Surface observations, 19:00 UTC 18 March 2012 (courtesy UCAR)

A red flag warning was issued for nearly all of eastern Colorado. And with good reason! A grass fire started in Yuma County, CO (which borders Nebraska and Kansas) in the early afternoon, and quickly grew out of control. The media dubbed it the Heartstrong Fire. An area 14 x 16 miles had to be evacuated, although only 2400 acres actually burned. The smoke plume was easily visible from the Goodland, KS, National Weather Service radar. Two homes were destroyed, and three firefighters were injured battling the blaze.

Radar image of smoke from the Heartstrong Fire, 21:17 UTC 18 March 2012

Radar image of smoke from the Heartstrong Fire seen by the Goodland, KS, NWS radar, 21:17 UTC 18 March 2012 (courtesy UCAR)

"True Color" image of the Heartstrong Fire, 19:34 UTC 18 March 2012

"True Color" image (RGB composite of VIIRS channels M3, M4 and M5) of the Heartstrong Fire, 19:34 UTC 18 March 2012

Even though cirrus clouds covered the area (as seen in the true color image above), VIIRS observed the fire in its two 3.7 µm channels. The VIIRS images shown here, from 19:34 UTC, were taken roughly 20 minutes after the fire was first reported. The moderate resolution band M-12 (centered at 3.7 µm) identifies a hot spot (which shows up as black in the image below) that is approximately 6 pixels by 3 pixels. With ~750 m resolution at nadir in this band, that corresponds to a total area of 10.2 km² of pixels that contain a fire signal.

Image of the Heartstrong Fire from VIIRS channel M-12, 19:34 UTC 18 March 2012

Image of the Heartstrong Fire from VIIRS channel M-12, 19:34 UTC 18 March 2012

The high resolution imagery band I-4 (centered at 3.74 µm) also identifies the hot spot. In this case it is approximately 11 pixels by 5 pixels in size. At ~375 m resolution at nadir, this corresponds to an area of 7.7 km² of pixels that contain a fire signal.

Image of the Heartstrong Fire  from VIIRS channel I-4, 19:34 UTC 18 March 2012

Image of the Heartstrong Fire (indicated by the red arrow) from VIIRS channel I-4, 19:34 UTC 18 March 2012

Thus, the difference in resolution between these two channels leads to a difference in the apparent size of the hot spot as seen by satellites. However, it should be noted that this apparent size is only an estimate of the size of the hot spot visible in the satellite image, not the actual size of the fire. Fires move in narrow flame fronts that cover only a small percentage of the pixel area. From a firefighting perspective, detecting which pixels actually contain fire and where the actual burning occurs within those pixels are two different things.

Of additional interest is the difference in observed brightness temperatures between these two channels. The warmest pixel in M-12 was 327 K, while the warmest pixel in I-4 was 342 K. As the observed brightness temperature is related to the fraction of each pixel covered by fire, the higher resolution images produce higher brightness temperatures in the hot spot.

This means that, to a human observer, the hot spot appears larger in the M-band image, while, from an automated algorithm point-of-view, the I-band image has a larger number of pixels within the hot spot, and higher brightness temperatures. The difference in the appearance of the hot spot between these channels is more clearly seen in the figure below. Be sure to click on the image, and then look for the “1700×702” link above the image title and click on that to see the comparison in its highest quality.

Comparison between the I-4 and M-12 views of the Heartstrong Fire

Comparison between the I-4 and M-12 views of the Heartstrong Fire. The previous I-4 and M-12 images (taken at 19:34 UTC, 18 March 2012) have been zoomed in for additional clarity.

As an additional note, band M-13 (centered at 4.05 µm) is the primary band used in active fire detection. This band was designed specifically to measure the radiative signal of hot spots without sensor saturation. The M-13 image of the fire is shown below.

Image of the Heartstrong Fire taken by VIIRS band M-13, 19:34 UTC 18 March 2012

Image of the Heartstrong Fire from VIIRS channel M-13, 19:34 UTC 18 March 2012

There is a dedicated team of researchers actively exploring fire detection from VIIRS. You can learn more about fire detection and the status of their current fire detection products by visiting viirsfire.geog.umd.edu.