Fires in Paradise

Sometimes, it seems like the whole world is on fire. Siberia. The western United States (which has been burning for some time). And now, the Canary Islands. The Spanish islands have been under a drought, as has much of Spain. (As an indication of how dry it has been, one fire in mainland Spain was started by someone flicking a cigarette butt out of their car window in a traffic jam – a fire that ultimately led to two deaths.) Back in July, fires got started on Tenerife – a major resort destination – and earlier this month, fires began on La Palma and La Gomera. At least two firefighters have already died battling these fires.

For your reference, here is a VIIRS “true color” image (M-3 [0.488 µm], M-4 [0.555 µm], M-5 [0.672 µm]) of the Canary Islands, with the major islands labelled:

VIIRS true color RGB composite of channels M-3, M-4 and M-5, taken 14:01 UTC 5 August 2012

VIIRS true color RGB composite of channels M-3, M-4 and M-5, taken 14:01 UTC 5 August 2012

If you look closely at this image, from 5 August 2012, you can see smoke plumes coming off of La Palma and La Gomera. You can also see what looks like a von Kármán vortex street downwind of La Palma. That’s the west coast of Africa in the lower-right corner of the image.

As discussed previously, the true color RGB composite is better for viewing the smoke plume, but you can’t actually see the fire directly. So, here’s the M-5 (0.672 µm), M-7 (1.61 µm) and M-11 (2.25 µm) composite from the same time:

VIIRS RGB composite of channels M-5, M-7 and M-11, taken 14:01 UTC 5 August 2012

VIIRS RGB composite of channels M-5, M-7 and M-11, taken 14:01 UTC 5 August 2012

It’s easy to see where the fires are actively burning with this composite. Let’s zoom in to make it even more obvious:

VIIRS false color RGB composite of channels M-5, M-7 and M-11, taken 14:01 UTC 5 August 2012

VIIRS false color RGB composite of channels M-5, M-7 and M-11, taken 14:01 UTC 5 August 2012

All the bright red pixels indicate where the fire is actively burning. You can also see the burn scar on Tenerife (not as easily as in Siberia) where the M-5, M-7, M-11 RGB composite shows the fire was back in July:

VIIRS false color RGB composite of  channels M-5, M-7 and M-11, taken 14:38 UTC 18 July 2012

VIIRS false color RGB composite of channels M-5, M-7 and M-11, taken 14:38 UTC 18 July 2012

La Gomera has been the hardest hit island, where thousands of people had to be evacuated, and approximately 10% of Garajonay National Park has burned. Garajonay National Park is home to one of the last remaining laurisilva forests, which has been around for 11 million years. That lush vegetation burned hot, and channel I-04 (3.7 µm) reached saturation as that area went up in flames:

VIIRS channel I-04 image of fires in the Canary Islands, taken 14:01 UTC 5 August 2012

VIIRS channel I-04 image of fires in the Canary Islands, taken 14:01 UTC 5 August 2012

The two white pixels on La Gomera are where I-04 reached saturation and “fold-over” due to the heat from the fire. M-13 (4.0 µm), which is a dual-gain band designed to not saturate, reached a brightness temperature of 451 K over La Gomera, compared with a saturation brightness temperature of 367 K for channel I-04.

The fires also showed up in the Day/Night Band that night:

VIIRS Day/Night Band image of the Canary Islands, taken 02:25 UTC 6 August 2012

VIIRS Day/Night Band image of the Canary Islands, taken 02:25 UTC 6 August 2012

The red arrows point out the fires on La Palma and La Gomera. The fire on La Gomera covers a significant percentage of the island. The yellow arrow points to Lanzarote, which, for some reason, is not part of IDL’s map. On the night this image was taken, the moon was approximately 84% full, so you can see a number of clouds as well the city lights from the major resort areas of the Canary Islands. The biggest visible city in Africa is El Aaiún, the disputed capital of Western Sahara.

Finally, here’s the “pseudo-true color” composite of VIIRS channels I-01 (0.64 µm), I-02 (0.87 µm) and I-03 (1.61 µm) from 13:42 UTC 6 August 2012. This is a full granule at the native resolution of the Imagery bands with no re-mapping, showing the rich detail of VIIRS high-resolution imagery, including more interesting cloud vortices:

VIIRS false color RGB composite of channels I-01, I-02 and I-03, taken 13:42 UTC 6 August 2012

VIIRS false color RGB composite of channels I-01, I-02 and I-03, taken 13:42 UTC 6 August 2012

Make sure to click on the image, then on the “6400×1536” link to see it in its full glory.

Wild Week of Wildfires, Part II

Last time on “Wild Week of Wildfires“, we looked at the Little Bear Fire and High Park Fire, two lightning-ignited fires burning out west that were so hot they caused saturation in the two 3.7 µm channels on VIIRS (I-04 and M-12). There was mention of the Duck Lake Fire, a lightning-ignited fire in northern Michigan, which VIIRS also saw, and I couldn’t resist showing some more images.

On 9 June 2012, the same day the High Park Fire exploded (figuratively speaking), the Duck Lake Fire finally reached 100% containment after burning over 21,000 acres. The next day (10 June 2012), Suomi NPP passed over the Upper Peninsula of Michigan, and it was actually a clear day. (This joke comes courtesy of 20+ years experience of living in Michigan.) Even with 100% containment, the hot spot of the fire was still clearly visible in VIIRS channel I-04 (3.7 µm) that afternoon:

Channel I-04 image of the Duck Lake Fire from VIIRS, taken 18:18 UTC 10 June 2012

Channel I-04 image of the Duck Lake Fire from VIIRS, taken 18:18 UTC 10 June 2012

The highest brightness temperature in the burn area in this channel at this time was    ~331 K. As we saw before with the Lower North Fork Fire, the high resolution false color composite of channels I-01, I-02 and I-03 is useful in highlighting the burn area:

False color RGB composite of VIIRS channels I-01 (blue), I-02 (green) and I-03 (red), taken 18:18 UTC 10 June 2012

False color RGB composite of VIIRS channels I-01 (blue), I-02 (green) and I-03 (red), taken 18:18 UTC 10 June 2012

Notice the large, brown area that coincides with the hot spot in the I-04 image. The combination of wavelengths used in this composite (0.64 µm [blue], 0.865 µm [green] and 1.61 µm [red]) is quite sensitive to the amount (and health) of the vegetation.

You might have also noticed several other interesting features in the image that show up better when you zoom in:

False color composite of VIIRS channels I-01, I-02, and I-03 from 18:18 UTC 10 June 2012

False color composite of VIIRS channels I-01, I-02, and I-03 from 18:18 UTC 10 June 2012

The Upper Peninsula of Michigan was based on mining for most of its history, and several large mines and quarries still exist, which VIIRS can easily see.

If you didn’t know any better, you might confuse the iron mine southwest of Marquette, Michigan with a frozen lake, or miraculously un-melted snow leftover from winter, since that is just what snow and ice look like in this kind of RGB composite. Compare that with the true color view of the same area:

True color RGB composite of VIIRS channels M-3, M-4 and M-5, taken 18:18 UTC 10 June 2012

True color RGB composite of VIIRS channels M-3, M-4 and M-5, taken 18:18 UTC 10 June 2012

In this case, the iron mine stands out as a bright red. Why?

The true color composite uses wavelengths at 0.48 µm (blue), 0.55 µm (green) and 0.67 µm (red). The red channel in the true color composite is actually in the red portion of the visible spectrum. The blue channel in the false color composite (0.64 µm) is also in the red portion of the visible spectrum.

This example shows that the iron oxide (rust) produced at the iron mine is highly reflective in the red portion of the visible spectrum. That’s what gives it the characteristic rust color. Iron oxide is not nearly as reflective at shorter or longer wavelengths, so it shows up blue when red wavelengths are used as the blue channel (as in the false color composite) and red when they are used as the red channel (as in the true color composite).

Let this be a lesson to anyone who uses the false color composite as part of a snow and ice detection algorithm. Snow and ice are not the only things to show up that color. You may be looking at a really large iron mine.

A Wild Week of Wildfires

The last few weeks have been filled with lightning-ignited wildfires across the United States. The County Line Fire, along the Florida-Georgia border was caused by lightning on 5 April 2012 and burned ~35,000 acres. The Whitewater-Baldy Complex (began 16 May 2012) – the largest wildfire in New Mexico history – started as two different fires (both caused by lightning) that merged together. It’s over 280,000 acres (that’s not a typo) and continues to burn (as of 13 June 2012). The Duck Lake Fire (began 24 May 2012) burned 21,000 acres of Michigan’s Upper Peninsula and was caused by lightning. The Little Bear Fire (began 4 June 2012), also in New Mexico, was caused by lightning and has burned ~37,000 acres.  Much closer to home, the High Park Fire (began 9 June 2012) is already the largest wildfire in Larimer County history and the third largest fire in Colorado history. It has burned ~46,000 acres and I bet you can guess what caused it.

It’s not clear who is to blame here – there is a long list of suspects – but I bet it was Thor. Even though the U.S. is generally the domain of the Thunderbird, Thor has a mountain-crushing hammer called Mjöllnir, which makes him as good a suspect as any. He may have been in cahoots with Indra or Marduk who are the bringers of rain, and have been holding back on us. Look at how dry it has been across the majority of the country.

With all of these fires, it’s hard to know where to begin. We’re going to ignore the County Line Fire as it was put out over a month ago. We’re also going to ignore the Whitewater-Baldy Complex, as it is so big, it can be seen by GOES. (Kidding! We kid because we love.) Plus, it’s been done before. The VIIRS view of the High Park Fire has also been looked at by CIMSS, with an interesting comparison between VIIRS and MODIS.

What we are going to do is show off interesting features of some of these fires that haven’t been shown or discussed before (as far as we know). We begin with “saturation”. Both the High Park Fire and Little Bear Fire saturated the VIIRS 3.7 µm channels (I-04 and M-12):

Channel I-04 image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel I-04 (3.7 µm) image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel M-12 image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel M-12 (3.7 µm) image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel I-04 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel I-04 (3.7 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel M-12 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel M-12 (3.7 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

The top two images are of the Little Bear Fire, which formed near the border of Lincoln and Otero counties in New Mexico. The bottom two images are of the High Park Fire in Larimer County, Colorado. For each fire, the high resolution 3.7 µm channel (I-04) is compared with the moderate resolution 3.7 µm channel (M-12). The colors range from white (cold) to black (hot). But, wait a minute! If white is cold, why are there white pixels mixed in with the black ones that indicate the hot spots? That’s because these channels are saturating and experiencing “fold-over”. The peak brightness temperatures these channels can measure is ~ 367 – 368 K. Anything warmer than that won’t be detected, so the channel is said to be saturated. When it really gets above that limit you can have “fold-over”, where not only are you not observing the higher, correct temperature, the detectors actually report a lower temperature or radiance. In these fires, the fold-over is resulting in brightness temperatures down to 203 K for M-12 and 208 K for I-04, which is about 90-100 K colder than even the area surrounding the fires!

Luckily, VIIRS has a 4.0 µm channel (M-13) that was designed to not saturate at the temperature of typical wildfires. Compare the hottest pixels in the M-13 images below with the fold-over pixels from M-12 and I-04 above:

Channel M-13 image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel M-13 (4.0 µm) image of the Little Bear Fire from VIIRS taken 20:16 UTC 9 June 2012

Channel M-13 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel M-13 (4.0 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

The hottest pixel in M-13 reached a temperature of 588 K for the Little Bear Fire and 570 K for the High Park Fire – over 200 K warmer than the saturation points of M-12 and I-04!

These fires were so hot, they appeared in channels that don’t usually show a fire signal. Limiting our attention to the High Park Fire (which was almost literally in our back yard), here’s the I-05 (11.5 µm) image from 10 June 2012:

Channel I-05 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel I-05 (11.5 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

The highest temperature observed in I-05 was 380 K. Longer wavelength channels, such as in I-05 are less sensitive to sub-pixel hot spots than channels in the 3.7 – 4.0 µm range, so fires don’t often show up. For pixels to have a 380 K brightness temperature in I-05, it means that the average temperature over the entire pixel had to be above +100 °C – hot enough to boil water!

Fires don’t often show up at shorter wavelengths, either, because the amount of solar radiation usually dwarfs any signal from the Earth’s surface. But, the High Park Fire did reach saturation at 2.25 µm (M-11):

Channel M-11 image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

Channel M-11 (2.25 µm) image of the High Park Fire from VIIRS taken 19:59 UTC 10 June 2012

The color scale has been reversed so that it is more inline with visible imagery. The white pixels represent saturation in M-11 at a radiance of 38 W m-2 µm-1 sr-1. The reflectance of these pixels saturated at a value of 1.6, which means that the amount of radiation detected in this channel was more than 1.6 times the amount you would expect to see if the surface was a perfect mirror reflecting all the solar radiation back to the satellite. Thus, the fire’s contribution to the total radiance was significant in this channel.

The contribution from the surface (i.e., the fire) was also visible in the 1.6 µm channel (M-10), but it isn’t exciting enough to show. One channel shorter down on VIIRS (M-9, 1.38 µm) and the signal disappears against the high reflectivity of the smoke plume.

It’s impossible to leave out the Day/Night Band, which shows just how large and how close the High Park Fire got to Fort Collins:

Day/Night Band image of the High Park Fire from VIIRS taken 09:58 UTC 11 June 2012

Day/Night Band image of the High Park Fire from VIIRS taken 09:58 UTC 11 June 2012. Image courtesy Dan Lindsey.

The smoke plume, while not exactly visible, is affecting the view of the east side of the fire and Fort Collins, making them appear more blurry than they would if the sky were completely clear. You can also see that, overnight on 11 June 2012, the fire covered an area larger than any of the cities visible in the image (except for Denver, which is mostly cropped off the bottom of the image).

Hopefully, Marduk will start doing his job and bring us some rain and these will be the last fires for a while.

The Hewlett Fire

According to reports, a man camping along the Hewlett Gulch trail in Roosevelt National Forest on 14 May 2012 had his camping stove knocked over in a gust of wind. One week (and $2.9 million) later, the Hewlett Fire scorched more than 7600 acres before fire crews could gain the upper hand. At one point 80 homes were evacuated but, thankfully, none of them were damaged. The smoke plume could be seen as far away as Laramie, Wyoming. Less than 20 miles away from the Cooperative Institute for Research in the Atmosphere, our home, it certainly caught our attention.

VIIRS aboard Suomi NPP monitored the fire day and night. About an hour after the fire was first reported, VIIRS captured the hot spot in channel I-04 (3.7 µm):

Image of the Hewlett Fire from VIIRS channel I-04, 20:05 UTC 14 May 2012

Image of the Hewlett Fire from VIIRS channel I-04, 20:05 UTC 14 May 2012

In the above image, the warmest (darkest) pixel had a brightness temperature of 350 K.  A simple RGB composite of channels I-01 (0.64 µm), I-02 (0.87 µm) and I-03 (1.61 µm), with no other manipulation, from the same time as the I-04 image above, produces a red spot right over the I-04 hot spot:

False color RGB composite of VIIRS channels I-01, I-02 and I-03, 20:05 UTC 14 May 2012

False color RGB composite of VIIRS channels I-01, I-02 and I-03, 20:05 UTC 14 May 2012

Perhaps more amazing (but less useful from a firefighting perspective) is that, if you look closely (and you know the geography of the area), you can make out the locations of the following highways: I-25, I-76 and I-80, plus the main Union Pacific railroad tracks that more-or-less parallel I-80 in southern Wyoming. The high resolution imagery bands on VIIRS have enough resolution to identify interstate highways!

Suomi NPP passed over the area that night (15 May 2012) and the Day/Night Band (DNB) captured the fire burning brightly:

Day/Night Band image of the Hewlett Fire, 08:25 UTC 15 May 2012

Day/Night Band image of the Hewlett Fire, 08:25 UTC 15 May 2012. Image courtesy Dan Lindsey.

By the time of the 17 May 2012 nighttime overpass – two days later – the fire had grown significantly. With no clouds around, the DNB easily saw the Hewlett Fire, as it was the brightest thing in the area. The image below has been enhanced to make the nearby city lights easier to see relative to the fire.

Day/Night Band image of the Hewlett Fire, 09:26 UTC 17 May 2012

Day/Night Band image of the Hewlett Fire, 09:26 UTC 17 May 2012

In the above image, lights from various cities have been identified. The red arrow indicates the Hewlett Fire, which was bright enough and large enough to be confused for a city. The yellow arrow indicates what might be oil and/or gas flares burning in rural Weld County, which you can also see in the 15 May 2012 DNB image. Weld County is home to a third of all the oil and gas wells in Colorado.

In this zoomed-in image, you can see that the light from the fire covered an area approximately one third the size of Fort Collins:

Zoomed Day/Night Band image of the Hewlett Fire, 09:26 UTC 17 May 2012

Zoomed Day/Night Band image of the Hewlett Fire, 09:26 UTC 17 May 2012. Image courtesy Dan Lindsey.

This image was taken before the burn area even reached its maximum size. At the same time, channel I-04 also saw this ring of fire (not to be confused with the “ring of fire” caused by the recent annular eclipse):

VIIRS channel I-04 image of the Hewlett Fire, 09:26 UTC 17 May 2012

VIIRS channel I-04 image of the Hewlett Fire, 09:26 UTC 17 May 2012

Once again, darker colors indicate higher brightness temperatures. The peak temperature in channel I-04 at this time was 356 K.

Even though it caused no damage to homes or structures, it was a little too close for comfort for many people.

As a final note, our partners up the hill in the Department of Atmospheric Science have taken an interest in the Hewlett Fire. If you are interested in the non-satellite side of the research into this fire, research groups led by Professors Rutledge, Kreidenweis and Collett have collected radar observations and in situ aerosol samples of the smoke plume. Contact them for more information.

Popocatépetl, the Smoking Mountain

According to legend, Popocatépetl was a great warrior whose girlfriend, Iztaccíhuatl, died because her father was a jerk who lied. (An alternate story is that it was a rival warrior who was a jerk who lied.) Either way, Iztaccíhuatl was erroneously told that Popocatépetl died in battle, which caused her to die of grief. When Popoca, as he was known to his buddies, returned to find out that she was dead, he was very sad. Reports on what followed differ, but Popoca either died of grief himself, or committed suicide at the thought of living without Iztaccíhuatl. To commemorate these events, the gods turned them both into mountains. To this day, the mountain Popocatépetl spews out rock and ash and fire either because he’s still mad at what happened, or because it is his way of looking out for his girlfriend.

The name Iztaccíhuatl literally means “White Woman,” and is the name of the snow-covered mountain ~40 miles southeast of Mexico City. Popocatépetl literally means “Smoking Mountain,” and is the name given to the volcano just to the south of Iztaccíhuatl. It is one of Mexico’s most active volcanoes.  Ole’ Popoca has recently begun to remind us that he is mad (or eternally vigilant).

The alert level was raised in mid-April after the volcano was heard rumbling and once again began spewing ash over the region. If you clicked on that link, you might have noticed this sentence:

“The joint NOAA-NASA Suomi NPP satellite snapped a picture of the ash cloud coming from Popocatépetl on April 16.”

Although they forgot to include the picture in the article, VIIRS on board Suomi NPP did see the ash cloud. Here’s an image of the I-01 reflectance (white = 1, black = 0) taken by VIIRS on 16 April 2012 at 20:25 UTC:

Image of Popocatépetl's ash plume from VIIRS channel I-01, 20:25 UTC 16 April 2012

Image of Popocatepetl's ash plume from VIIRS channel I-01, 20:25 UTC 16 April 2012

The ash plume is pushed to the east by the winds surrounding the cloud-covered volcano (where the arrow is pointing). On a clearer day, you can see Popocatépetl, Iztaccíhuatl, Matlacuéyatl, and the tallest volcano in Mexico, Pico de Orizaba:

False-color RGB composite (I-01, I-02 and I-03) from VIIRS taken at 19:53 UTC 23 May 2012

False-color RGB composite (I-01, I-02 and I-03) from VIIRS taken at 19:53 UTC 23 April 2012

The above image is a false-color RGB composite of VIIRS channels I-01, I-02 and I-03 taken at 19:53 on 23 April 2012. The volcanoes and nearby urban centers have been identified and labelled. Pico de Orizaba, Popocatépetl, and Iztaccíhuatl are the first, second and third tallest mountains in Mexico, respectively, and are normally the only mountains in Mexico to be snow-covered year-round. The snow on top of Pico de Orizaba and Iztaccíhuatl is clearly visible in the image. Popocatépetl lost its snow during the 1990s when it became more active. But, you can see the cloud of ash and steam from the volcano in the image, which is not being blown around in the wind as much on this day. In fact, you can watch a time-lapse video of the steam and ash cloud from a Mexican government webcam from around the time of the Suomi-NPP overpass where you can see the clouds produced/influenced by The Smoking Mountain.

On 20 April 2012, a photographer captured this amazing image of Popocatépetl’s eruption of lava at night. Being near a new moon (which occurred on 21 April), the Day/Night Band (DNB) was able to see this lava eruption:

VIIRS Day/Night Band image of the Popocatépetl eruption from 07:58 UTC 20 April 2012

VIIRS Day/Night Band image of the Popocatepetl eruption from 07:58 UTC 20 April 2012

VIIRS I-01 image of Popocatépetl taken at 19:53 UTC 23 April 2012

VIIRS I-01 image of Popocatepetl taken at 19:53 UTC 23 April 2012

In the above images, the red arrows are pointing to the same spot – the top of Popocatépetl. The upper image is from the DNB at 07:58 UTC on 20 April 2012, the lower image is from I-01 at 19:53 UTC on 23 April 2012 (the same time as the RGB composite). If you were to overlay the images on top of each other, you would see that the light source visible in the DNB image is right at the top of the volcano. Since there are no towns up there, and people surrounding the volcano have been evacuated, the light is coming from the erupting lava.

CIMSS provided these images of the volcano and ash plume at night (the same time as the DNB image above), which were visible in channels I-04 and I-05:

Image of Popocatépetl from VIIRS channel I-04, 07:58 UTC 20 April 2012

Image of Popocatépetl from VIIRS channel I-04, 07:58 UTC 20 April 2012 (courtesy William Straka, III / CIMSS)

Image of Popocatépetl from VIIRS channel I-05, 07:58 UTC 20 April 2012

Image of Popocatépetl from VIIRS channel I-05, 07:58 UTC 20 April 2012 (courtesy William Straka, III / CIMSS)

The upper image is the I-04 image. Channel I-04, at 3.74 µm, is very sensitive to hot spots such as wildfires or, in this case, volcanic eruptions. The dark (warm) spot identified is the heat signature of the molten rock that is erupting from the volcano. The cooler (brighter) ash cloud is visible in the I-04 image, but it shows up more clearly in the I-05 (11.45 µm) image underneath it.

Someone compiled a time-lapse series of images (14 April – 22 April) of Popocatépetl from a “NASA satellite” (presumably GOES-13) and posted the video to YouTube, which you can watch here.

Given its proximity to Mexico City, Popocatépetl is on the list of dangerous volcanoes to watch out for. The folks at WIRED are keeping their eye on it. Hopefully, Ole’ Popoca is just letting off a little steam, and not planning to get real violent. His girlfriend died a long time ago – it’s time to just let it go already.