The east coast of Australia is on fire!

There’s an ongoing serious situation in Australia: the bush in New South Wales and Queensland is on fire.

Here’s a look at what the Advanced Himawari Imager (AHI) on Himawari-8 saw on 8 November 2019: click here.

What you see in that loop is the “Natural Fire Color RGB” (known to American forecasters as the “Day Land Cloud Fire RGB”) on the left (link to PDF description here), and the “Fire Temperature RGB” on the right (link to PDF description here). These are precisely the products we debuted on this blog seven years ago when we first looked at fires in Australia. Except, now there is a difference: the “Natural Fire Color RGB” is now made with the 3.7 µm band as the red component (replacing the 2.25 µm band I used originally), since the 3.7 µm channel is even better at detecting fires. This also means that we can produce the VIIRS version using “I-band” resolution (375 m). AHI, used in the loop I linked to above, has 2 km resolution* for the mid- and shortwave infrared (IR) bands.

Along the coast, near the northern edge of the images is Brisbane, the third largest city in Australia. Near the southern edge of those images is Sydney, the largest city in Australia. As you can see from Himawari-8, much of the area between the two is on fire. And, this is not the “Outback” where very few people live. This region contains some of the highest population density in Australia, and it’s also prime habitat for koalas, which don’t live anywhere outside of eastern Australia (except in zoos).

It’s no secret that resolution plays in big role in fire detection from satellites. We’ve covered this many times before. But, to hammer the point home (bit of American slang), here’s the resolution difference between VIIRS and AHI in full view from 3:50 UTC on 7 November 2019:

Himawari-8 AHI Day Land Cloud Fire RGB composite of bands 2, 4, and 7 (03:50 UTC, 7 November 2019)

Himawari-8 AHI Day Land Cloud Fire RGB composite of bands 2, 4, and 7 (03:50 UTC, 7 November 2019)

S-NPP VIIRS Day Land Cloud Fire RGB composite of bands I-1, I-2 and I-4 (03:49 UTC, 7 November 2019)

S-NPP VIIRS Day Land Cloud Fire RGB composite of bands I-1, I-2 and I-4 (03:49 UTC, 7 November 2019)

As always, click on each image to bring up the full resolution version. If you just look at the elephant-thumbnail-sized images above without clicking on them, you might get the impression that fires are easier to spot with AHI than with VIIRS. That’s because AHI makes it appear that the entire 2km-wide pixel* is full of fire, when a fire typically only fills a very small percentage of the total area of the pixel. With 375 m resolution**, VIIRS more accurately pinpoints the locations of fire activity. Although, it should be noted that even this is still a larger scale than most fire fronts. To be really accurate, you need something with the resolution of Landsat’s OLI, or a similar radiometer attached to an aircraft – except these high-resolution instruments don’t provide full global coverage multiple times daily like VIIRS, or hemispheric coverage every 10 minutes like AHI. (*On AHI [and ABI and AMI] pixels may be approximated as square-shaped solid angles that are projected onto the curved surface of the Earth from a point roughly 36,000 km above the Equator. 2 km is the width of an IR pixel at the sub-satellite point [on the Equator], where the resolutions are the highest. **VIIRS pixel resolutions vary across the swath by a factor of 2 between nadir and edge of scan, as we shall see. 375 m is the nadir value.)

For completeness, we can do the same comparison with the Fire Temperature RGB:

Himawari-8 AHI Fire Temperature RGB composite of bands 5, 6 and 7 (03:50 UTC, 7 November 2019)

Himawari-8 AHI Fire Temperature RGB composite of bands 5, 6 and 7 (03:50 UTC, 7 November 2019)

S-NPP VIIRS Fire Temperature RGB composite of bands M-10, M-11 and M-12 (03:46 UTC, 7 November 2019)

S-NPP VIIRS Fire Temperature RGB composite of bands M-10, M-11 and M-12 (03:46 UTC, 7 November 2019)

This time, we’re comparing 2 km resolution (AHI) against 750 m resolution (VIIRS), so the differences aren’t as stark. But, this is a good opportunity to remind everyone that the Fire Temperature RGB provides information on fire intensity, while the Natural Fire Color (Day Land Cloud Fire) RGB provides information on fire detections (plus smoke and burn scars), and should be used more as a “fire mask”.

There’s another resolution difference that is easy to see from these fires, and it can be quite significant. I first noticed it when looking at this animation I made of the VIIRS Fire Temperature RGB from 1-11 November 2019:

Animated GIF of VIIRS Fire Temperature RGB images (1-11 November 2019)

Animated GIF of VIIRS Fire Temperature RGB images (1-11 November 2019)

You have to click on the animation to get it to play.

Did you notice the same thing I did? You probably noticed the explosive growth of the fires from 7-9 November, but that’s not what I’m talking about. (Hint: Pay close attention to the nighttime images.) At night, without any sunlight present, you lose information on clouds and the background land surface, and only the fires are visible (unless they are obscured by clouds). That’s where today’s feature of interest resides. I’ll zoom in on some of the fires from 5 November 2019 to make it easier to see:

Animated GIF of VIIRS Fire Temperature RGB images (5 November 2019)

Animated GIF of VIIRS Fire Temperature RGB images (5 November 2019)

The image from 14:01 UTC comes from S-NPP, while the image from 14:52 comes from NOAA-20. Is NOAA-20 better than S-NPP at detecting the fires? Well, the reverse happened two nights later:

Animated GIF of VIIRS Fire Temperature RGB images (7 November 2019)

Animated GIF of VIIRS Fire Temperature RGB images (7 November 2019)

This time, the fires appear hotter (brighter) in the 15:03 UTC image, which came from S-NPP. The 14:12 UTC image came from NOAA-20. Here’s a sequence of three images from 10 November where the NOAA-20 image is sandwiched by two S-NPP images:

Animated GIF of VIIRS Fire Temperature RGB images (10 November 2019)

Animated GIF of VIIRS Fire Temperature RGB images (10 November 2019)

So, why do the fires appear brighter in some images and not others? It’s possible that the fires are becoming more active in the middle image (due to an increase in winds, for example), but it’s more likely that you are seeing the direct result of resolution differences between the various overpasses. “But, I thought both VIIRS instruments had the same resolution,” you might say as though it were a question. And that statement would suggest that you forgot about the “bowtie-effect”. (Not the effect that has anything to do with diamonds, but the effect I wrote a whole chapter about here [PDF].) If you read the **above you would already know that the resolution of VIIRS degrades by a factor of two between nadir and the edge of scan. And, if you didn’t already know, NOAA-20 and S-NPP are positioned in space a half-orbit apart. This means that, in the time it takes between a NOAA-20 overpass and a S-NPP overpass, the Earth has rotated by half the width of the swath (approximately). So, when one VIIRS instrument views something at nadir, it will be close to the edge of scan on the other satellite (and have more coarse resolution as a result).

So, in the last animation, the first image (14:05 UTC) is S-NPP viewing the fires from the east near the edge of scan, the middle image (14:56 UTC) is NOAA-20 viewing the fires near nadir, and the third image is S-NPP viewing the fires from the west – even closer to the edge of scan. (Plus, the terrain is sloping away from S-NPP in the last image as well.)

Those factors contribute to the changing appearance of the fires. They also highlight the value of having two VIIRS instruments in space: if one satellite doesn’t get a good look at a fire, the other one likely will.

By the way, these fires have been producing a lot of smoke. Here is a loop of VIIRS True Color images from 6-11 November:

 

And the view from the ground is even more apocalyptic:

December Fluff

By now, you probably know the drill: a little bit of discussion about a particular subject, throw in a few pop culture references, maybe a video or two, then get to the good stuff – high quality VIIRS imagery. Then, maybe add some follow-up discussion to emphasize how VIIRS can be used to detect, monitor, or improve our understanding of the subject in question. Not today.

You see, VIIRS is constantly taking high quality images of the Earth (except during orbital maneuvers or rare glitches). There isn’t enough time in a day to show them all, or go into a detailed discussion as to their relevance. And, nobody likes to read that much anyway. So, as we busily prepare for the upcoming holidays, we’re going to skip the in-depth discussion and get right to the good stuff.

Here then is a sample of interesting images taken by VIIRS over the years that weren’t featured on their own dedicated blog posts. Keep in mind that they represent the variety of topics that VIIRS can shed some light on. Many of these images represent topics that have already been discussed in great detail in previous posts on this blog. Others haven’t. It is important to keep in mind… See, I’m starting to write too much, which I said I wasn’t going to do. I’ll shut up now.

Without further ado, here’s a VIIRS Natural Color image showing a lake-effect snow event that produced a significant amount of the fluffy, white stuff back in November 2014:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

As always, click on the image to bring up the full resolution version. Did you notice all the cloud streets? How about the fact that the most vigorous cloud streets have a cyan color, indicating that they are topped with ice crystals? The whitish clouds are topped with liquid water and… Oops. I’m starting to discuss things in too much detail, which I wasn’t going to do today. Let’s move on.

Here’s another Natural Color RGB image using the high-resolution imagery bands showing a variety of cloud streets and wave clouds over the North Island of New Zealand:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

Here’s a Natural Color RGB image showing a total solar eclipse over Scandinavia in 2015:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

Here’s a VIIRS True Color image and split-window difference (M-15 – M-16) image showing volcanic ash from the eruption of the volcano Sangeang Api in Indonesia in May 2014:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 - M-16) image (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 – M-16) image (06:20 UTC 31 May 2014)

Here’s a VIIRS True Color image showing algae and blowing dust over the northern end of the Caspian Sea (plus an almost-bone-dry Aral Sea):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

Here is a high-resolution infrared (I-5) image showing a very strong temperature gradient in the Pacific Ocean, off the coast of Hokkaido (Japan):

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

The green-to-red transition just southeast of Hokkaido represents a sea surface temperature change of about 10 K (18 °F) over a distance of 3-5 pixels (1-2 km). This is in a location that the high-resolution Natural Color RGB shows to be ice- and cloud-free:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

Here’s a high-resolution infrared (I-5) image showing hurricanes Madeline and Lester headed toward Hawaii from earlier this year:

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

Here are the Fire Temperature RGB (daytime) and Day/Night Band (nighttime) images of a massive collection of wildfires over central Siberia in September 2016:

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

Here is a 5-orbit composite of VIIRS Day/Night Band images showing the aurora borealis over Canada (August 2016):

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Here is a view of central Europe at night from the Day/Night Band:

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

And, finally, for no reason at all, here’s is a picture of Spain wearing a Santa hat (or sleeping cap) made out of clouds:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

There you have it. A baker’s ten examples showing a small sample of what VIIRS can do. No doubt it will be taking more interesting images over the next two weeks, since it doesn’t stop working over the holidays – even if you and I do.

When China Looks Like Canada

OK, so there probably aren’t any “Canadatowns” in China like there are Chinatowns in Canada. (Now you’re probably wondering what a Canadatown in China would look like. Maybe stores and restaurants selling poutine and maple syrup? Hockey rinks and curling sheets everywhere? A Tim Hortons on every street corner?) But this isn’t about that!

Last time I made the comparison between Canada and China, it was because there were numerous fires, particularly in the Northwest Territories, that produced so much smoke that it choked the air, making it difficult to breathe. This smoke was visible all the way down to the Lower 48 United States. These huge smoke plumes looked a lot like Chinese super-smog. Today, we’re talking not about the smoke and smog… well, actually, smoke and smog will be mentioned… hmm. Uh, what I mean is we’re focusing on the zillions of fires that VIIRS saw over Manchuria – just like the zillions of fires in the Northwest Territories. Well, OK, not “just like” – those fires were caused by Mother Nature. These fires appear to be intentionally set by human beings and are much smaller.

A CIRA colleague was checking out a real-time loop of MTSAT 3.75 Β΅m imagery over northeastern China and reported seeing bright spots (which are typically hot spots from fires) throughout the area for most of the last month. So what is going on there?

MTSAT has ~4 km spatial resolution, so it’s not the best for fire detection. (At the time of this writing, CIRA has access to MTSAT-2, aka Himawari-7, which has 4 km spatial resolution in the infrared channels. The Advanced Himawari Imager {AHI} was successfully launched on Himawari-8 on 7 October 2014 and, when the operational imagery becomes available, it will have 2 km resolution in this channel [and it will have many of the channels that VIIRS has]. CIRA has plans to acquire this data when it becomes available. Until then, you’ll have to deal with coarse spatial resolution.) To really see what is going on, you need the spatial resolution of VIIRS.

Of course, spatial resolution is not the only thing you need. Check out the VIIRS M-13 (4.0 Β΅m)Β  image below from 04:48 UTC 18 November 2014. How many hot spots can you see?

VIIRS M-13 image of northeastern China, taken 04:48 UTC 18 November 2014

VIIRS M-13 image of northeastern China, taken 04:48 UTC 18 November 2014.

This image uses a color table specifically designed to highlight hot spots from fires. Any pixel above 317 K (44 Β°C or 111 Β°F) is colored. (As always, click on the image to see it in full resolution.) There aren’t that many colored pixels, even though we’re using a relatively low temperature threshold for fire detection. There are, however, a lot of nearly black pixels, which means they are warmer than the background, but not warm enough to be highlighted. (In case you’re not sure, I’m talking about the area between 45Β° and 48Β°N, 123Β° and 128Β°E.) If we used this temperature threshold in a summer scene, there would be a lot false alarm fire detections.

A situation like this is when the Fire Temperature RGB composite comes in handy. It can detect the small (or low temperature) fires with no problem, particularly since the background isn’t very warm. Try to count up all the red pixels in this image from the same time:

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12, taken 04:48 UTC 18 November 2014

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12, taken 04:48 UTC 18 November 2014.

That’s a lot of fires! It’s probably because there are so many of them that they were visible in MTSAT. If you look closely at the full resolution image, there are two significant fires in North Korea, plus many more smaller fires/hot spots northwest and north of the Yellow Sea. Go back and compare the Fire Temperature RGB with the M-13 image. Admit it: fires in this scene are easier to see in the RGB composite.

If you don’t believe me, check out the M-13 and Fire Temperature RGB images that have been zoomed in on main concentration of fires. The Fire Temperature RGB has been lightened a little bit and the M-13 image has been darkened a little bit to highlight the hot spots better.

VIIRS M-13 image (as above) but zoomed in and slightly darkened

VIIRS M-13 image (as above) but zoomed in and slightly darkened.

VIIRS Fire Temperature RGB image (as above) but zoomed in and lightened slightly

VIIRS Fire Temperature RGB image (as above) but zoomed in and lightened slightly.

If you want to know why the Fire Temperature RGB composite works, go back and read this and this. Otherwise, stay put. If you’re familiar with the Fire Temperature RGB, because you are a loyal follower of this blog, you may be wondering why the overall image looks so dark.

All the previous cases where I’ve shown this RGB have been in the summer, typically under bright sunlight (since fires don’t tend to occur in winter). Here, it’s almost winter so there is less sunlight and the background surface is colder, which are going to make the image appear darker. Plus, there is some snow in the scene and snow appears black in this RGB composite. It’s not reflective at 1.61 Β΅m (blue component) or 2.25 Β΅m (green component) or at 3.74 Β΅m (red component), plus it’s cold so it doesn’t emit much radiation at any of these wavelengths either.

The Natural Color RGB shows where the snow is. Look for the cyan signature of snow and ice here:

VIIRS Natural Color RGB composite of channels M-5, M-7, and M-10, taken 04:48 UTC 18 November 2014

VIIRS Natural Color RGB composite of channels M-5, M-7, and M-10, taken 04:48 UTC 18 November 2014.

The Natural Color RGB shows that the fires are occurring in an area with a lot of lakes. Also, there isn’t a very strong green signature from vegetation in this area. So what is burning? Your guess is as good as mine. (Unless your guess is a bunch of Chinese children using magnifying glasses to burn ants. That’s not a very good guess – particularly because, as I said, there is less sunlight in the winter and it’s colder so the ants wouldn’t ignite easily. Also, that’s a cruel thing to suggest and my reasoned account of why that wouldn’t work should not be taken as an implicit admission that I ever did such a thing as a kid.)

A quick perusal of Google Maps reveals that it is an area full of agricultural fields. So my guess is that it’s some sort of end-of-year burning of agricultural waste. They are all small or low temperature fires and they’re not anything that made the news (I checked), so it’s doubtful that it’s a zillion uncontrolled fires.

How do we even know they’re fires? Besides the fact that they show up in the Fire Temperature RGB, we can also see the smoke. Check out this True Color RGB image and focus on the area where the majority of the fires are occurring:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken at 04:48 UTC 18 November 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken at 04:48 UTC 18 November 2014.

There are visible smoke plumes right where the greatest concentration of hot spots is located. There is also a long plume of gray along the base of the Changbai Mountains stretching southwest to the shores of the Yellow Sea, but it’s not clear if that is also smoke or simply smog. By the way, if you have respiratory ailments, don’t look at the southwest corner of the image (west of the Yellow Sea) because that’s definitely smog! The northern extent of that large area of smog is the Beijing metropolitan area.

What is most cough- and barf- inducing about that smog near Beijing is that it is thick enough to completely obscure the view of the surface. Last time we looked at that, it was record levels of smog that was receiving international attention. The thick, surface obscuring smog you see here isn’t record breaking or news-worthy – it’s simply a normal late fall day in eastern China!

If you can’t think of anything else to be thankful for on Thursday, you can be thankful that you don’t have to breathe air like that. Unless you live there. But, then, you wouldn’t be celebrating Thanksgiving anyway. And, if you live in Canada, you already had your Thanksgiving. You get to just sit back, relax, and watch Americans trample each other to death for discount electronics. Being able to avoid the Black Friday mob is something to be truly thankful for!

When Canada Looks Like China

No, I’m not talking about Chinatown in Vancouver. Or Chinatown in Toronto. Or any other Chinatown in Canada. I’m talking about this. Or, more exactly, this. Poor air quality is making it difficult to breathe in Canada and elsewhere.

Unlike the situation in China, you can’t really blame the Canadians for their poor air quality. (Unless, of course, some serial arsonist is wreaking havoc unfettered.) You see, it has been an active fire season in western Canada, to put it mildly. Here’s a not-so-mild way to put it. That article, from 3 July 2014, put the number of fires in the Northwest Territories alone at 123, with most of them caused by lightning. But, after a check of the Northwest Territories’ Live Fire Map on 30 July 2014 it looks like there are more than that:

"Live Fire Map" from NWTFire, acquired 17:00 UTC 30 July 2014

"Live Fire Map" from NWTFire, acquired 17:00 UTC 30 July 2014. This is a static image, not an interactive map.

I estimated 160-170 fires in that image (assuming I didn’t double count or miss any). How many fires can you count?

At one point earlier in July, it was estimated that battling the fires was costing $1 million per day! The fires have been impacting power plants, causing power outages, impacting cellular and Internet service, closing the few roads that exist that far north, and doubling the number of respiratory illnesses reported in Yellowknife, the territory’s capital.

It’s no secret that this area is sparsely populated. At last count, the territory had roughly 41,000 residents in 1.3 million km2. (Fun fact: the Northwest Territories used to make up 75% of the land area of Canada. It has since been split up among 5 provinces and into two other territories. With the formation of Nunavut in 1999, it was reduced to being only twice the size of Texas.) If so few people live there, why should we care if they have a few fires?

If you are so heartless as to ask that question, you are also short-sighted and selfish. For one, I already explained the damage that the fires are doing. For two, fires like these impact more than just the immediate area and more than just Canada. Let me explain that but, first, let me show you the fires themselves – as seen by VIIRS – over the course of the last month.

Animation of VIIRS Fire Temperature RGB images 24 June - 25 July 2014

Animation of VIIRS Fire Temperature RGB images 24 June - 25 July 2014

You will have to click on the above image, then on the “933×700” link below the banner to see the animation at full resolution. It is 15 MB, so it may take a while to load if you have limited bandwidth. What you are looking at is the Fire Temperature RGB in the area of Great Slave Lake, the area hardest hit by this fire season. There are a lot of fires visible over the course of the month!

See how the larger fires spread out? They look like the large scale version of an individual flame spreading out on a piece of paper. (Don’t try to replicate it at home. I don’t want you catching your house on fire!) Of course, the spread of the fires is dependent on the winds, humidity, moisture content in the vegetation, and the firefighters – if they’re doing their job.

Now, these weren’t the only fires in Canada during this time. Check out this Fire Temperature RGB image from 15 July 2014 and see how many (rather large) fires there are in British Columbia and Saskatchewan:

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12, taken 21:08 UTC 15 July 2014

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12, taken 21:08 UTC 15 July 2014

Make sure to click through to the full resolution version. I counted 9 large fires in British Columbia, 1 in Alberta (partially obscured by clouds) and 6 in Saskatchewan. If you look closely, you might also spot 3 small fires in Washington plus more small fires in Oregon. (“Small” here is compared to the fires in Canada.)

Now, all these fires means there must be smoke and, because VIIRS has channels in the blue and green portions of the visible spectrum, we can see the smoke clearly. This is one of the benefits of the True Color RGB (in addition to what we discussed last time). If I tried to create another animation, like I did above, showing the extent of the smoke plumes it would be so large it might crash the Internet. Instead, here are some of the highlights (or low-lights, depending on your point of view) from the last month.

On 6 July 2014, the smoke is largely confined to the area around Great Slave Lake:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:35 UTC 6 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:35 UTC 6 July 2014

The very next day (7 July 2014) the smoke is blown down into Alberta and Saskatchewan (almost as far south as Calgary and Saskatoon):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:16 UTC 7 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:16 UTC 7 July 2014

One day later (8 July 2014) smoke is visible down into Montana, North Dakota and beyond the edge of the image in South Dakota (a distance of over 2000 km [1200 miles] from the source!):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 19:57 UTC 8 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 19:57 UTC 8 July 2014

 

On the 12th of July, you could see a single smoke plume stretching from Great Slave Lake all the way into southwestern Manitoba (plus smoke over British Columbia from their fires):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:23 UTC 12 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:23 UTC 12 July 2014

When the fires really get going in British Columbia a few days later, the smoke covers most of western Canada. On 15 July 2014, smoke is visible from the state of Washington to the southern reaches of Nunavut and Hudson Bay:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 19:27 UTC 15 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 19:27 UTC 15 July 2014

One day later (16 July 2014), and it appears that smoke covers 2/3 of Alberta, nearly all of Saskatchewan, all of western Manitoba, southern Nunavut, southeastern Northwest Territories, and most of Montana and North Dakota. There is also smoke over Washington, Oregon and northern Idaho:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:48 UTC 16 July 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 20:48 UTC 16 July 2014

A quick estimate puts the area of smoke in the above image at 2.5 million km2, which is roughly a third the size of the contiguous 48 states!

With renewed activity in the fires in the Northwest Territories last week, the smoke was still going strong over Canada, impacting Churchill, Manitoba (home of polar bears and beluga whales):

VIIRS True Color RGB composite of channels M-4, M-4 and M-5, taken 20:17 UTC 23 July 2014

VIIRS True Color RGB composite of channels M-4, M-4 and M-5, taken 20:17 UTC 23 July 2014

I guess if the melting polar ice caps don’t kill off the polar bears, they can still get cancer from all this smoke. Maybe the “world’s saddest polar bear” will want to stay in Argentina.

I should add that some of my colleagues at CIRA and I have sensitive noses and were able to smell smoke right here in town (Fort Collins, Colorado) earlier this month. Plus, there were a few smoky/hazy sunsets. (Although it should be clarified that we don’t know if it was from the fires in Canada or the fires in Washington and Oregon. There weren’t any fires in Colorado at the time.) Nevertheless, the areal coverage and extent of the smoke from fires like these is immense, and can have impacts thousands of miles away from the source. And, it’s all carbon entering our atmosphere.

 

UPDATE (8/1/2014): Colleagues at CIMSS put together this image combining two orbits of data over North America from yesterday (31 July 2014), where you can see smoke stretching from Nunavut all the way down to Indiana, Ohio and West Virginia. There may even be some smoke over Kentucky and Tennessee. Witnesses at CIMSS reported very hazy skies across southern Wisconsin as a result.

Record Russian Rain Runoff Responsible for Rapid River Rise

Sorry, I couldn’t help myself with that title.Β  Last time we looked at flooding in Russia, it was in the western parts – generally near Moscow and primarily along the Oka River – and caused by rapid melting of record spring snowfall. This time, flooding is occurring in Russia’s Far East, primarily along the Amur River, caused by heavy rainfall related to monsoon wind patterns in the region – record levels of flooding not seen before in the 160 years Russians have settled in the area.

Unfortunately, this natural disaster is affecting more than just Russia. In China, many people are dead or missing as the result of flooding. (The figure of “hundreds dead or missing” includes flooding caused by typhoons Utor and Trami in southeastern China, flash flooding in western China, and the subject of today’s post: river flooding in northeastern China and far east Russia.) The Chinese provinces of Liaoning, Jilin and Heilongjiang have been hit particularly hard with persistent, heavy rains since late July, as have areas just across the border in Amur Oblast, Khabarovsk Krai and the Jewish Autonomous Oblast in Russia.

A few more facts: Heilongjiang is the Chinese name for the Amur River. It translates to English as “Black Dragon”. The Mongols called it Kharamuren (“Black Water”), which, I assume, the early Russian settlers shortened to Amur. It is the longest undammed river in the Eastern Hemisphere and the home to the endangered Amur leopard and Amur tiger. Since 1850, the Amur River has been the longest piece of the border between China and Russia. Now, in 2013, the Amur River has reached the highest levels ever recorded.

Backing up a bit, here’s what the area looked like according to “Natural Color” or “pseudo-true color” VIIRS imagery back in the middle of July:

VIIRS false-color RGB composite of channels I-01, I-02 and I-03, taken 03:27 UTC 14 July 2013

VIIRS false-color RGB composite of channels I-01, I-02 and I-03, taken 03:27 UTC 14 July 2013

As always, click on the image, then on the “2368×1536” link below the banner to see the full resolution version. Here’s what the same area looked like about a month later:

VIIRS false color RGB composite of channels I-01, I-02 and I-03, taken 03:14 UTC 21 August 2013

VIIRS false color RGB composite of channels I-01, I-02 and I-03, taken 03:14 UTC 21 August 2013

Notice anything different? The Amur River has overflowed its floodplain and is over 10 km (6 miles) wide in some places. Just downriver (northeast) from Khabarovsk, the flooded area is up to 30 km (18 miles) wide!

Pay attention to Khabarovsk. Back in 1897, the Amur River crested there with a stage of 6.42 m (about 21 feet in American units), which was the previous high water mark. On 22 August 2013, the river stage reached 7.05 m (23 feet) and was expected to keep rising to 7.8 m (25.6 feet) by the end of August. The map below (in Russian) shows the local river levels on 22 August 2013. It came from this website.

Amur River levels at various locations in Khabarovsk Krai, Russia on 22 August 2013.

Amur River levels at various locations in Khabarovsk Krai, Russia on 22 August 2013.

Note that Khabarovsk in Cyrillic is Π₯абаровск (the black dot in the lower left), and Amur is Амур. The blue numbers represent the river stage in cm. Red numbers indicate the change in water level (in cm) over the last 24 hours. The colored dots indicate how high the river level is above flood stage according to the color scale (also in cm). The river at Khabarovsk is more than 4 meters (13 feet) above flood stage.

Not impressed by comparing a “before” and “after” image? Here’s an animation over that time period (14 July to 21 August 2013), with images from really cloudy days removed:

Animation of VIIRS false-color composites of channels I-01, I-02 and I-03

Animation of VIIRS false-color composites of channels I-01, I-02 and I-03. Click on the image, then on the "1184x768" link below the banner to view the animation.

You have to click through to the full resolution version before the loop will play. In order to not make the world’s largest animated GIF, the I-band images in the loop have been reduced in resolution by a factor of 2, making them the same resolution as if I had used M-5, M-7 and M-10 to make this “Natural Color” composite.

The Day/Night Band is not known for its ability to detect flooding at night, but it also saw how large the Amur River has become:

VIIRS Day/Night Band image, taken 17:27 UTC 20 August 2013

This image was taken on 20 August 2013, which just so happens to be the night of a full moon. The swollen rivers are clearly visible thanks to the moonlight (and general lack of clouds).

Khabarovsk is a city of over 500,000 people and would require a major evacuation effort if the river reached the expected 7.8 m level. Over 20,000 people have already been evacuated in Russia alone (and over a million people in China) according to this report. Oh, and at least two bears.

This heavy rain and flooding makes it all the more surprising that, a little further north and west in Russia, there have been numerous, massive wildfires. Check out this “True Color” image from VIIRS, taken on 16 August 2013:

VIIRS"True Color" composite of channels M-3, M-4 and M-5, taken 03:12 UTC 16 August 2013.

VIIRS"True Color" composite of channels M-3, M-4 and M-5, taken 03:12 UTC 16 August 2013.

See the supersized swirling Siberian smoke spreading… OK, I’ll quit with the alliteration. Here’s the smoke plume on the very next overpass (about 90 minutes later) seen on a larger scale:

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 04:52 UTC 16 August 2013.

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 04:52 UTC 16 August 2013.

A strong ridge of high pressure with its clockwise flow is trapping the smoke over the region. In this image you can see quite a few of the smoke sources where the fires are still actively burning. Look in the latitude/longitude box bounded by 98 Β°E to 105 Β°E and 59 Β°N to 61 Β°N. By the way, that’s Lake Baikal on the bottom of the image, just left of center.

A quick back-of-the-envelope calculation indicates that the area covered by smoke is roughly 500,000 km2. (Of course it is complicated by the fact that the smoke is mixing in with the clouds, so it is hard to define a true boundary for the smoke on the north and west sides.) That puts it in the size range of Turkmenistan, Spain and Thailand. If that’s not a good reference for you, how’s this? The smoke covers an area larger than California and smaller than Texas.

These fires have burned for more than a month. This article from NASA includes a MODIS image from 25 July 2013 containing massive smoke plumes and shows that areas of central Russia (particularly north of the Arctic Circle) have had a record heatwave this summer. And here are a few more images of the smoke from MODIS over the past few weeks.

Heatwaves and fires and floods? Russia is all over the map. Literally. I mean, look at a map of Asia – Russia is all over that place. It even spreads into Europe!