The Outback on Fire

I’m not talking about a Subaru. I’m talking about the vast expanse of sparsely-populated Australia. We’ve already seen fires in the United States, Russia and the Canary Islands. Well, they have been happening down under, too. (Is there any part of this planet not currently experiencing a drought?)

Despite the risk of getting fire fatigue (“Another post about fires?” *yawn*), we’re going to look at these fires for two reasons. First, it gives me a chance to show off the “fire tornado” video clip that has been making the rounds on the Internet:

Second, VIIRS saw the fire that produced the “fire tornado” (and a whole bunch of other fires) and it gives me a chance to show off the newly christened “Fire Temperature RGB”.

First, let’s look at the boring (yet still valuable) way of detecting fires: identifying hot spots in a 3.9 µm image. Here’s what VIIRS channel M-13 (4.0 µm) saw over Australia on 19 September 2012:

VIIRS channel M-13 image of central Australia, taken 04:34 UTC 19 September 2012

VIIRS channel M-13 image of central Australia, taken 04:34 UTC 19 September 2012

Pixels hotter than 350 K show up as black in this image. Given this information, how many fires can you see? (Hint: click on the image, then on the “3200×1536” link below the banner to see the image at full resolution. And, no, wise guy – you don’t count all the black pixels outside the boundaries of the data.)

Here’s the “pseudo-true color” RGB composite (this time made of M-05 [0.67 µm, blue], M-07 [0.87 µm, green], and M-10 [1.61 µm, red]):

False-color RGB composite of VIIRS channels M-05, M-07 and M-10, taken 04:34 UTC 19 September 2012

False-color RGB composite of VIIRS channels M-05, M-07 and M-10, taken 04:34 UTC 19 September 2012

With this RGB composite, really hot fires show up as bright red pixels. More hot spots are visible in the M-13 image than the “pseudo-true color” image because M-13 is much more sensitive to the heat from fires than M-05, M-07 and M-10 are. M-10 only picks up the signal from the hottest (or biggest) fires. M-05 and M-07 don’t pick up the heat signal at all, because the radiation from the sun, reflected off the Earth’s surface, drowns it out (which is precisely why the hot spots look red). M-13 is also better at detecting fires because it works at night, unlike these three channels.

You can make the hot spots from the smaller/less hot (lower brightness temperature) fires more visible by replacing M-10 with M-11 (2.25 µm) as the red channel in the RGB composite. M-11 is more sensitive to hot spots than M-10. If you do that, you get this image:

False-color RGB composite of VIIRS channels M-05, M-07 and M-11, taken 04:34 UTC 19 September 2012

False-color RGB composite of VIIRS channels M-05, M-07 and M-11, taken 04:34 UTC 19 September 2012

Since the previous RGB composite is often referred to as “natural color”, maybe this one should be called the “natural fire color” RGB composite. Now, most of the hot spots (not just the hottest ones) show up as red.

It should be noted that the fire complex in the grid box bounded by the 24 °S and 26 °S latitude and 128 °E and 132 °E longitude lines is where the video of the fire tornado came from. That fire is currently burning close to Uluru (a.k.a. Ayers Rock), the site where the creator beings live, according to local legend. According to an Uluru-Kata Tjuta National Park newsletter from back in July, prescribed burns were taking place in and around the park, although it’s not clear if the fires seen by VIIRS now (in September) are part of the prescribed burns.

EUMETSAT recently held a workshop on RGB satellite products, where a new RGB composite was proposed for VIIRS: the “Fire Temperature RGB”, made from M-10 (1.61 µm, blue), M-11 (2.25 µm, green) and M-12 (3.70 µm, red). Here’s what that looks like:

False-color RGB composite of VIIRS channels M-10, M-11 and M-12, taken 04:34 UTC 19 September 2012

False-color RGB composite of VIIRS channels M-10, M-11 and M-12, taken 04:34 UTC 19 September 2012

In this composite, hot spots from fires show up as yellow, orange, bright red or white, depending on how hot they are. Liquid clouds show up as light blue. Ice clouds, which are missing from this scene, typically show up as dark green. The background surface shows up as a shade of purple. Burn scars, which show up as dark brown in the “natural color” and “natural fire color” composites, show up as more of a maroon color in the “fire temperature” composite. Coincidently, maroon is the “official color” of Queensland, although it looks like most of the maroon burn scars show up in the Northern Territory.

To easily compare the different views of the fires (and make it obvious to everyone what the fires look like), here’s an animation, zoomed in on the lower left corner of each of the images above:

Animated loop of images of the fires in Australia as seen by VIIRS, 04:34 UTC 19 September 2012

Animated loop of images of the fires in Australia as seen by VIIRS, 04:34 UTC 19 September 2012

The yellow highlighted areas are where the active fires are.

Now that you’ve seen several different ways of displaying fire hot spots with VIIRS, which one do you like best?

VIIRS Captures a Glimpse of Hell

VIIRS has seen Hell and, luckily, it did not get scared. No, I’m not talking about Hell, Michigan, which is actually a nice place (and not as scary as their website would indicate). I’m talking about the Gates of Hell (or Door to Hell, depending on who you talk to) in Turkmenistan. You can see a single video of it here and, if that isn’t enough to get a sense of it, someone compiled a list of 296 videos of the Gates of Hell near Derweze/Darvaza, Turkmenistan.

Turkmenistan doesn’t have much – 80% of it is the Karakum Desert – but it does have a lot of oil and natural gas deposits. Back in 1971, the Soviet Union wanted to take advantage of these deposits, so they began drilling a gas well near the town of Derweze. Unfortunately, the drilling opened up a sinkhole that ate the drilling rig and caused the natural gas to leak out in large quantities. Oh, no! What to do now? Light it on fire!

The team of geologists thought that the best way to prevent the town from being suffocated by the toxic fumes was to ignite the gas, let it burn itself out in a few days, and return to see what the damage was. Guess what? That fire is still burning today – 41 years later!

This constantly burning crater is only 230 ft (70 m) across. So it may come as a surprise (to some people, at least) that VIIRS has no trouble seeing it. The highest-resolution channels on VIIRS have a spatial resolution of ~375 m at nadir. The fiery pit is so visible, the Day/Night Band (DNB), with ~740 m resolution, makes the Gates of Hell look like the biggest town in central Turkmenistan:

VIIRS Day/Night Band image of Turkmenistan, taken 22:26 UTC 13 September 2012

VIIRS Day/Night Band image of Turkmenistan, taken 22:26 UTC 13 September 2012

The red arrow points out the light source that is the Gates of Hell. One other thing to note from this image is all the lights in the Caspian Sea. Those are oil rigs, with the largest light source (the one closest to the center of the Caspian Sea) being the floating/sinking city of Neft Daşları (a.k.a Oily Rocks), which sounds like a pretty interesting/sad/weird place to work.

In case you think the lights are coming from the town of Derweze and not the actual Gates of Hell, here’s a zoomed in image from the DNB along with the M-12 (3.7 µm) brightness temperatures:

VIIRS Day/Night Band image of the Derweze "Gates of Hell", Turkmenistan, taken 22:26 UTC 13 September 2012

VIIRS Day/Night Band image of the Derweze "Gates of Hell", Turkmenistan, taken 22:26 UTC 13 September 2012

VIIRS channel I-04 image of the Derweze "Gates of Hell", Turkmenistan, taken 22:26 UTC 13 September 2012

VIIRS channel M-12 image of the Derweze "Gates of Hell", Turkmenistan, taken 22:26 UTC 13 September 2012. The color scale ranges from 210 K (white) to 300 K (black).

The Gates of Hell is the only light source that also shows up as a 345 K hot spot in channel M-12. Since this is a nighttime image, the signal in M-12 comes only from emission from the Earth (and clouds, etc.) without any contribution from solar reflection (as there would be during the day). What you see in the M-12 image is the temperature of the objects in the scene, just like a typical infrared (IR) satellite image, except with higher sensitivity to sub-pixel heat sources. The clouds show up as cold (bright, in this color table) above the warmer (darker) land surface. Sarygamysh Lake (and a few other smaller lakes) show up as really warm (dark) because the desert floor at night cools off much more than the water does.

The moon here was only ~10% full, so there wasn’t enough light reflecting off the few clouds in the scene for the DNB to detect them. In fact, with so little moonlight, everything is dark in the DNB. Everything, that is, except for the towns, villages and flaming craters of burning methane.

Hurricane Isaac: Before, During and After

While Hurricane Isaac (then a tropical storm) did not destroy Tampa, Florida as many people feared, it certainly left its mark on the Gulf Coast. With many locations from Florida to Louisiana receiving more than 12″ of rain, and levees unable to keep out the storm surge, flooding was (and still is) a major problem. Look at these aerial photos of Isaac’s aftermath in Louisiana. The Visible Infrared Imaging Radiometer Suite (VIIRS) aboard Suomi NPP saw that flooding, also.

But first, let’s look at the high resolution infrared (IR) window channel (I-05, 11.45 µm) which, at ~375 m resolution, is the highest-resolution IR window channel on a public weather satellite in space today. This image was taken when Isaac was still a tropical storm in the middle of the Gulf of Mexico:

VIIRS I-05 image of Tropical Storm Isaac, taken 18:50 UTC 27 August 2012

VIIRS I-05 image of Tropical Storm Isaac, taken 18:50 UTC 27 August 2012

This image uses a new (to this blog, anyway) color scale, developed by our colleagues at CIMSS, that really highlights the structure of the clouds at the top of Isaac. The color scale is included in the image. For comparison, here’s the GOES Imager IR window channel (channel 4, 10.7 µm) image from roughly the same time:

GOES-13 Imager channel 4 image of Tropical Storm Isaac, taken 18:45 UTC 27 August 2012

GOES-13 Imager channel 4 image of Tropical Storm Isaac, taken 18:45 UTC 27 August 2012

GOES has ~4 km resolution in its IR channels. VIIRS provides amazing details of the structure of tropical cyclones that you just can’t get with current geostationary satellites.

The real story from Isaac, however, is the flooding. It’s hard to capture flooding from a visible and infrared imaging instrument, since flooding usually occurs when it’s cloudy. Clouds block the view of the surface when looking at visible and infrared wavelengths. But, large quantities of water that fail to evaporate or drain into the local rivers after a period of several days can be seen after the skies clear. That’s what happened with Isaac.

Here are before-Isaac and after-Isaac images of the southern tip of the Florida Peninsula. These are false color (“pseudo-true color”) composites of VIIRS channels I-01, I-02 and I-03. These images were taken on the afternoon overpasses of 23 August and 29 August 2012. Many cities on the east coast of Florida got 10-16 inches of rain (250-400 mm for those of you outside the U.S.). See if you can pick out the flooding.

False color RGB composite of VIIRS channels I-01, I-02 and I-03 taken before and after Tropical Storm Isaac (2012)

False color RGB composite of VIIRS channels I-01, I-02 and I-03 taken before and after Tropical Storm Isaac (2012)

If you have been following this blog, you know that, in the “pseudo-true color” RGB composite, water shows up very dark – in most cases, almost black. That’s not always true, of course. You can see sun glint (particularly in the “before” image) that makes water a lighter color and shallow water (where visible radiation [i.e. channel I-01] is able to penetrate to the bottom) shows up as a vivid blue.

Now, notice the Everglades. Many areas of the Everglades, particularly on the east side, appear darker in the “after” image, because those swampy areas have a lot more water in them. Water has a lower reflectivity than vegetation or bare ground at these wavelengths.

The effect of water on the land surface shows up even better in the moderate resolution channel M-06 (0.75 µm). M-06 is a channel not shown before because it is perhaps the worst channel for producing interesting images. M-06 was designed to aid in ocean color retrievals and/or other uses that require atmospheric correction. The M-06 detectors saturate at a low radiance, so any radiation at 0.75 µm that reflects off of clouds, aerosols or the land surface easily show up. About the only things that have low reflectivity in M-06 are atmospheric gases and water surfaces without sun glint. Ocean color retrievals need a very clean atmosphere with no aerosols or clouds and no sun glint to work correctly. You also need to be able to identify what is or is not water, which is what makes M-06 useful for identifying flooding.

Here are the similar before-Isaac and after-Isaac images of Florida from M-06:

VIIRS channel M-06 images of southern Florida taken before and after Tropical Storm Isaac (2012)

VIIRS channel M-06 images of southern Florida taken before and after Tropical Storm Isaac (2012)

Both the land and optically thick clouds saturate M-06, so this channel is useless at identifying clouds over land (except you can see some cloud shadows). Sun glint is saturating the pixels over the Gulf of Mexico in the “before” image, while it is mostly to the east of Florida in the Atlantic Ocean in the “after” image. In the “after image”, reflective cirrus clouds over the Gulf of Mexico show up that are not as easily visible in the RGB composite. Of primary importance here, however, is the dark appearance of the Everglades in the “after” image. All that flood water reduced the reflectivity of the land surface, making it appear darker. That means, if you know where the clouds (and, hence, the cloud shadows) are, it may be possible to use M-06 to identify large flooded areas.

Louisiana and the coast of Mississippi were the hardest hit by Isaac, and the flooding is easily visible here, too. In fact, the massive flooding is easier to see in the RGB composite in this region. Compare the “before” and “after” images, taken on 26 August 2012 and 1 September 2012:

False color RGB composites of VIIRS channels I-01, I-02 and I-03 of southeast Louisiana

False color RGB composites of VIIRS channels I-01, I-02 and I-03 of southeast Louisiana

To make it easier to see, here’s a quick animation of the before and after images. Watch the highlighted areas.

Animated GIF of false color RGB composites taken from VIIRS before and after Hurricane Isaac

Animated GIF of false color RGB composites taken from VIIRS before and after Hurricane Isaac

After the passage of Hurricane Isaac, Lake Maurepas and Lake Pontchartrain almost appear to merge into one big lake! Other flooding is visible near Slidell, Bay St. Louis, Pascagoula Bay, and the heavily hit parishes of Plaquemines, St. Bernard, Lafourche and Terrebonne.

Thin cirrus clouds are visible in the “after” image, which limit the ability of M-06 to detect some of the flooding, but M-06 is still able to see the large areas of flooding highlighted in the animation above. M-06 also detects reflection off of the Twin Spans as well as the Lake Pontchartrain Causeway. And this is at ~750 m resolution!

VIIRS channel M-06 images of southeastern Louisiana taken before and after Hurricane Isaac (2012)

VIIRS channel M-06 images of southeastern Louisiana taken before and after Hurricane Isaac (2012)

So, don’t try to do ocean color retrievals in pixels obscured by big bridges.