A.1 \textit{Summary of Matrices}

A column vector is indicated by
\[f = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix}. \]

A matrix consisting of M rows and N columns is defined by
\[
A = \begin{pmatrix}
A_{11} & A_{12} & \ldots & A_{1N} \\
A_{21} & A_{22} & \ldots & A_{2N} \\
A_{31} & A_{32} & \ldots & A_{3N} \\
\vdots & \vdots & \ddots & \vdots \\
A_{M1} & A_{M2} & \ldots & A_{MN}
\end{pmatrix}.
\]

A is said to be an M x N matrix which is denoted by A_{ij}. The vector f is considered as a M x 1 matrix.

The product of a M x N matrix with a N x K matrix gives a M x K matrix. It is obvious that matrix multiplication is not commutative, that is AB is not equal to BA. When C = AB we have
\[
C_{ik} = \Sigma A_{ij} B_{jk}.
\]

Matrix products are associative so that A(BC) = (AB)C.

On the basis of the rule of matrix multiplication, the product of a row vector (1 x N) and a column vector (N x 1) gives a (1 x 1) matrix, or the scalar product
\[
f^t f = f_1 f_1 + f_2 f_2 + \ldots + f_N f_N.
\]

But the product of a column vector (N x 1) and a row vector (1 x N) gives a (N x N) matrix, or a vector product
\[
f f^t = \begin{pmatrix} f_1 f_1 & f_1 f_2 & \ldots & f_1 f_N \\
f_2 f_1 & f_2 f_2 & \ldots & f_2 f_N \\
\vdots & \vdots & \ddots & \vdots \\
f_N f_1 & f_N f_2 & \ldots & f_N f_N
\end{pmatrix}.
\]
To summarize these few properties of matrix multiplication: (a) matrix multiplication is not commutative, (b) the ji element of AB is the sum of products of elements from the jth row of A and ith column of B, and (c) the number of columns in A must equal the number of rows in B if the product AB is to make sense.

There are several matrices that are related to A. They are:

(a) A^t which is the transpose of A so that $[A^t]_{ij} = [A]_{ji}$,

(b) A^* which is the complex conjugate of A so that $[A^*]_{ij} = [A]_{ij}^*$,

(c) A^+ which is the adjoint of A so that $[A^+]_{ij} = [A]^*_{ji}$, and

(d) A^{-1} which is the inverse of A so that $A^{-1}A = AA^{-1} = I$, where I denotes the identity matrix.

A few definitions follow:

(a) A is real if $A^* = A$,

(b) A is symmetric if $A^t = A$,

(c) A is antisymmetric if $A^t = -A$,

(d) A is Hermitian if $A^+ = A$,

(e) A is orthogonal if $A^{-1} = A^t$, and

(f) A is unitary if $A^{-1} = A^*$.

A.2 Eigenvalue Problems

To understand some of the techniques for solving the radiative transfer equation it is necessary to review solutions to eigenvalue problems. When a operator A acts on a vector x, the resulting vector Ax is in general distinct from x. However there may exist certain non-zero vectors for which Ax is just a multiple of x. That is

$$Ax = \lambda x$$

or written out explicitly

$$\sum A_{ij} x_j = \lambda x_i \quad l=1,...,n .$$

Such a vector is called an eigenvector of the operator A, and the constant λ is called an eigenvalue. The eigenvector is said to belong to the eigenvalue. Consider an example where the operator A is given by
So we are trying to solve

\[\begin{align*}
 x_1 + 2x_2 + 3x_3 &= \lambda x_1 \\
 4x_1 + 5x_2 + 6x_3 &= \lambda x_2 \\
 7x_1 + 8x_2 + 9x_3 &= \lambda x_3
\end{align*} \]

For a nontrivial solution the determinant of coefficients must vanish

\[\begin{vmatrix}
 1 - \lambda & 2 & 3 \\
 4 & 5 - \lambda & 6 \\
 7 & 8 & 9 - \lambda
\end{vmatrix} = 0 \]

This produces a third order polynomial in \(\lambda \) whose three roots are the eigenvalues \(\lambda_i \).

There are several characteristics of the operator \(A \) that determine the character of the eigenvalue. Briefly summarized they are (a) if \(A \) is hermitian, then the eigenvalues are real and the eigenvectors are orthogonal (eigenvectors of identical or degenerate eigenvalues can be made orthogonal through the Gram Schmidt process) and (b) if \(A \) is a linear operator, then the eigenvalues and eigenvectors are independent of the coordinate system. A proof of (b) is quickly apparent.

\[A x = \lambda x \]

Let \(Q \) represent an arbitrary coordinate transformation, then

\[\gamma^{-1} A x = \lambda \gamma^{-1} x \]

\[\gamma^{-1} A \gamma \gamma^{-1} x = \lambda \gamma^{-1} x \]

\[A' x' = \lambda x' \]

Thus if \(x \) is an eigenvector of the linear operator \(A \), its transform

\[x' = \gamma^{-1} x \]

is an eigenvector of the transformed matrix.
\[A' = \gamma^{-1} A \gamma, \]
and the eigenvalues are the same.

It is often desirable to make a transformation to a coordinate system in which \(A' \) is a diagonal matrix and the diagonal elements are the eigenvalues. The desired transformation matrix consists of the eigenvectors of the original matrix \(A \).

\[
\gamma = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}
\]

where the \(j^{th} \) col consists of components of eigenvector \(e_j \). For the transformation to be unitary, the eigenvectors must be orthonormal (orthogonal and normalized).

A.3 \(\text{CO}_2 \) Vibration Example

Consider the problem of molecular vibrations in \(\text{CO}_2 \), which is shown schematically as a simple linear triatomic molecule system consisting of three masses connected by springs of spring constant \(k \). Let \(x_i \) represent deviations from the equilibrium position.

\[
x_1 \quad x_2 \quad x_3
\]

\[
m \quad M \quad m
\]

\[
O \quad C \quad O
\]

The kinetic energy of this system can be written

\[
T = \frac{1}{2} \sum_{i} m_i v_i^2 = \frac{1}{2} v^T M v
\]

where \(v \) represents \(dx/dt \). The potential energy is given by

\[
P = \frac{1}{2} \sum_{ij} P_{ij} x_i x_j = \frac{1}{2} x^T P x
\]

where

\[
P = P_o + \sum_i \left(\frac{\partial P}{\partial x_i} \right)_o x_i + \frac{1}{2} \sum_{ij} \left(\frac{\partial^2 P}{\partial x_i \partial x_j} \right)_o x_i x_j
\]

and without loss of generality let \(P_o = 0 \) and use the fact that \(\partial P/\partial x = 0 \) at equilibrium. Then Lagrange's equation:

\[
d \frac{\partial T}{\partial \dot{x}} + \frac{\partial P}{\partial x} = 0
\]
\[
\frac{\partial}{\partial t} \frac{\partial}{\partial x} \mathbf{v}
\]
with
\[
T = \frac{1}{2} m v^2 \text{ and } P = \frac{1}{2} kx^2,
\]
becomes
\[
m v = -kx.
\]
This suggests a solution of the form \(x_i = a_i \sin (\omega t + \delta_i) \), so that
\[
\sum_P a_i - \omega^2 T a_i = 0.
\]
Now the potential energy is written
\[
P = \frac{1}{2} k (x_2 - x_1)^2 + \frac{1}{2} k (x_3 - x_2)^2
\]
\[
= \frac{1}{2} k (x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 - 2x_2x_3),
\]
so the matrix operator is,
\[
P = \begin{pmatrix} k & -k & 0 \\ -k & 2k & -k \\ 0 & -k & k \end{pmatrix}
\]
which is real and symmetric. And the kinetic energy is written
\[
T = \frac{1}{2} m (x_1^2 + x_3^2) + \frac{1}{2} Mx_2^2,
\]
so the matrix operator is
\[
T = \begin{pmatrix} m & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & m \end{pmatrix}
\]
which is diagonal. So, we find \(| P - \omega^2 T | = 0 \) implies
\[
\det A = \begin{vmatrix} k - \omega^2 m & -k & 0 \\ -k & 2k - \omega^2 M & -k \end{vmatrix} = 0
\]
A-6

o -k k-ω²m

and direct evaluation of the determinant leads to the cubic equation

\[\omega^2(k-\omega^2m)(kM + 2km - \omega^2Mm) = 0. \]

This yields the three roots

\[\omega_1 = 0, \ \omega_2 = [k/m]^{1/2}, \ \omega_3 = [(k/m)(1+2m/M)]^{1/2}. \]

Now solve for the eigenvectors. For \(\omega_1 = 0 \)

\[
\begin{array}{ccc}
 k & -k & 0 & a_{11} \\
 -k & 2k & -k & a_{12} \\
 0 & -k & k & a_{13}
\end{array} = 0 \Rightarrow a_{11} = a_{12} = a_{13}
\]

which represents a translation since the centre of mass doesn't move \(mx_1 + Mx_2 + mx_3 = 0 \).

For \(\omega_2 = [k/m]^{1/2} \)

\[
\begin{array}{ccc}
 0 & -k & 0 & a_{21} \\
 -k & 2k-kM/m & -k & a_{22} \\
 0 & -k & 0 & a_{23}
\end{array} = 0 \Rightarrow a_{22} = 0, a_{21} = -a_{23}
\]

which represents a vibration in the breathing mode with the carbon molecule stationary and the oxygen molecules moving in opposite directions.

For \(\omega_3 = [(k/m)(1+2m/M)]^{1/2} \)

\[
\begin{array}{ccc}
 -2mk/M & -k & 0 & a_{31} \\
 -k & -kM/m & -k & a_{32} \\
 0 & -k & -2mk/M & a_{33}
\end{array} = 0 \Rightarrow a_{31} = a_{33}, a_{32} = -(2m/M)a_{31}
\]

which represents the carbon molecule motion offset by the combined motion of the oxygen molecules.

Recalling that the mass of the proton is given by \(m_p = 1.67 \times 10^{-27} \text{Kg} \), that the spring constant for the \(\text{CO}_2 \) is roughly \(k \sim 1.4 \times 10^3 \text{J/m}^2 \) (from the second derivative of the potential curves), and that \(m = 16m_p \) while \(M = 12m_p \), then

\[
\omega_3 = \left[\frac{1.4 \times 10^3}{16 \times 1.67 \times 10^{-27}} \left(1 + \frac{32}{12} \right) \right]^{1/2} = [0.192 \times 10^{30}]^{1/2} = 0.438 \times 10^{15},
\]
and

\[\lambda = \frac{2\pi c}{\omega} = \frac{2\pi \times 10^8}{4.38 \times 10^{15}} \approx 4.3 \times 10^{-6} \text{ m} = 4.3 \mu\text{m} \]

This simple one dimensional model of the CO₂ molecular motions yields the absorption wavelength of 4.3 micron observed in the spectra. Considering two dimensional vibrations yields the solution at 15 micron.