
MONITORING WILDFIRES AND THEIR IMPACT ON EAST COAST AIR QUALITY
Hands-On Activity #2: Create Your Own VIIRS Images with NOAA Python Tools

Developed by:
Dr. Amy Huff, IMSG at NOAA/NESDIS Center for Satellite Applications and Research, [amy.huff@noaa.gov]
Ryan Theurer, GVT LLC at NOAA/NESDIS Center for Satellite Applications and Research, [ryan.theurer@noaa.gov]

Significant Hazards Satellite Applications Short Course

29 September 2019, Boston, MA

Goal of the Activity
This activity is designed to run through the basic concepts of visualizing NetCDF satellite data files using Python.
This is NOT a coding class, so participants should expect to do research on their own, offline, to modify the given
code for their specific applications.
The code provided here is a baseline, designed to show the approach for visualizing imagery - it is not designed to
be "plug and play."

Objectives
• Open and inspect VIIRS NetCDF data files
• Create a 2-D (lat/lon) image of VIIRS data zoomed into a regional domain
• Customize your image by adding borders, axes, a color bar, and a title
• Optional: Change coordinates to zoom out to the full geographic extent of the data coverage

Notes
• The symbol ## denotes code that can be "uncommented"
• Remove the leading ## in the relevant code so you can see how the code works step by step
• The symbol # denotes comments for your information; these lines will not run with the code
• Visit our JSC '19 Air Quality Training Materials website for more examples, additional data files, and supplemental
information:
 __https://www.star.nesdis.noaa.gov/smcd/spb/aq/aqpg/2019/__

Tips for Running the Activity Code on your Own

2

• If you change the range of the lat/lon coordinates or the figure size of the plot, then the resulting figure may be
partially cut off
 (e.g., missing parts of the latitude axis values or the title). This is an artifact of the Datalore web application
- it's NOT a problem with the figure itself.
 Your saved plot will display correctly.

• To save the activity code as a python file for use offline, go back to the Home page. Right-click on the
 file that you want save and a menu will open - left-click the "Export .ipynb" option and then navigate to where
you want to save the file.

• To download the NetCDF data files used in this activity, go back to the Home page. Right-click on the file that has
the data you want to save,
 and a menu will open - left-click the "Download" option and navigate to where you want to save the data files.

• If you run the program offline (not using Datalore), you will need to change the file paths in the code to match
where you are storing the data.

1. Preliminary Steps
• First, we will import several "helper" libraries to process the data.
• Run this code block (there is no code to uncomment). It's fast, so you will see "Done" at the bottom of the block
once the code is finished running.

import numpy as np # To perform array operations
import pandas as pd # For storing data into Dataframe objects
from matplotlib import pyplot as plt # Main plotting library
from cartopy import crs as ccrs # To create map projections for plots
from cartopy.feature import NaturalEarthFeature # To add maps to plots
from netCDF4 import Dataset # To read in NetCDF (.nc) file
import os # Library for accessing files in the directory
import math # Library for using math functions
import warnings

warnings.filterwarnings("ignore")

3

plt.rcParams['figure.figsize'] = [9, 7] # Sets all figures in the document to be 7"x9"
plt.rcParams.update({'font.size': 11}) # Sets fontsize in the document to 11 pts

np.set_printoptions(suppress=True) # An option to keep numpy from printing in scientific notation by

default

print('Done')

2a. The VIIRS Data File Naming Scheme
• The code in block 2b will read in a single NetCDF file, corresponding to a granule of VIIRS data. A granule is a
subset of a swath consisting of 48 scans of the VIIRS instrument. VIIRS data are distributed as granules to make
them easier to work with - a full swath file would be prohibitively large.

• The file name has the following format:

__JRR-AOD_v1r2_npp_s201808161740352_e201808161741593_c201808161836180.nc__

• The naming scheme is:
* __JRR-AOD:__ Mission and product name
* __v1r2:__ Processing stream
* __npp:__ Satellite name
* __s201808161740352:__ Year (YYYY), Month (MM), Day (DD), and Time (in UTC) at start of granule
* __e201808161741593:__ Year (YYYY), Month (MM), Day (DD), and Time (in UTC) at end of granule
* __c201808161836180:__ Year (YYYY), Month (MM), Day (DD), and Time (in UTC) granule was processed

2b. Opening a NetCDF File
• Using the "Dataset" command from the NetCDF4 library, we can open a NetCDF file and see how the data are stored.
• First, run the code block without changing anything.
• Then, comment out (add leading "##") to the first "print" command and uncomment the second "print" command, and re-
run the block.
• Finally, re-comment out the second "print" command and uncomment the third "print" command, and re-run the block.

4

Enter file name. We are working with 2 NetCDF files in this activity - one file at a time. Each NetCDF file
corresponds to a granule of data.
fname='/workspace/JRR-AOD_v1r2_npp_s201808161742006_e201808161743247_c201808161836340.nc'

Set the file name to read
file_id = Dataset(fname)

print(file_id)

By opening the file, we can already see some summary information, like the time coverage, long/lat, satellite name,
etc.
To get to the data, we need we need to go deeper into the file. At the bottom of the file you can see a section
called "variables".
Our data are inside this subfolder.
##print('\n', file_id.variables)

We can see the dimensions of each set of data we need by using the "shape" command.
##print('\n', file_id.variables['Latitude'].shape)

The output of the shape command shows us that our latitude data has the dimensions 3200 by 768.

3. Accessing the Data
• Now that we can see the data we need from the "variables" subfolder, we can begin to access it.
• First, run the code block without changing anything, to see the latitude information in the file.
• Then, comment out (add leading "##") to the first "print" command and uncomment the second "print" command, and re-
run the block.
• Finally, re-comment out the second "print" command and uncomment the third "print" command, and re-run the block.

file_id = Dataset(fname)

LATITUDE:
print('\n', file_id.variables['Latitude'][:,:])

5

LONGITUDE:
##print('\n', file_id.variables['Longitude'][:,:])

AOD DATA:
##print('\n', file_id.variables['AOD550'][:,:])

4. Extracting and Manipulating the Data
• Next, we can store our data as Dataframe objects. Dataframes are two dimensional tabular data structures that make
storing and munipulating data easy.
• Uncomment the first file name, uncomment the "print" command, and then run the code block to see the latitude
Dataframe.
• If you have time, you can uncomment the commands that return the max/min latitude and longitude of the given file
and re-run the block.

We are working with 2 NetCDF files in this activity. Uncomment the lines below, one at a time, to switch the data
file we are using.
##fname = 'JRR-AOD_v1r2_npp_s201808161743260_e201808161744501_c201808161834450.nc'
##fname = 'JRR-AOD_v1r2_npp_s201808161742006_e201808161743247_c201808161836340.nc'

file_id = Dataset(fname)

Store our data in variables to use later
lat = pd.DataFrame(file_id.variables['Latitude'][:,:])
lon = pd.DataFrame(file_id.variables['Longitude'][:,:])
data = pd.DataFrame(file_id.variables['AOD550'][:,:])

##print(lat)

Optional: uncomment the lines below and re-run the block to display the max/min of the latitude and longitude for
each granule (file) - to see the geographic extent of the granule domain.
##print('Min Lat:', pd.DataFrame(file_id.variables['Latitude'][:,:]).min().min())
##print('Min Long:', pd.DataFrame(file_id.variables['Longitude'][:,:]).min().min())
##print('Max Lat:', pd.DataFrame(file_id.variables['Latitude'][:,:]).max().max())

6

##print('Max Long:', pd.DataFrame(file_id.variables['Longitude'][:,:]).max().max())

5. Making an Image
• Now that we have extracted and manipulated our data correctly, we can plot it.
• In this example, we will add the features of our image first and then add the image (to save time loading the data
in the training setting).
• Uncomment the relevant code below, one segment (group of code lines) at a time, and re-run the code block each time
to add features to the plot and then visualize the VIIRS data file.

Initiate the plot and set up the projection
to_proj=ccrs.PlateCarree()
ax = plt.axes(projection=to_proj)

Set color range for the colorbar
The np.arange function creates a list of values between the first two numbers entered by intervals of the last
number entered.
color_range = np.arange(0, 1.1, 0.1)

Add coastlines
##ax.coastlines('50m')

Set states shapefile and add state borders
##states = NaturalEarthFeature(category="cultural", scale="50m", facecolor="none",
name="admin_1_states_provinces_shp")
##ax.add_feature(states, linewidth=.5, edgecolor="black")

Add gridlines and lat/lon axes
##gl = ax.gridlines(draw_labels=True, linewidth=.5, color='grey', linestyle='--')
##gl.xpadding = -12
##gl.ypadding = -28

Set axes limits to desired lat/lon domain and plot axes
##lat_min,lat_max,long_min,long_max = -83, -65, 37, 48

7

##plt.axis([lat_min,lat_max,long_min,long_max])

Add title
##plt.title('VIIRS AOD (16 August 2018)', y=1.05, fontsize=20)

For this example, we are going to create an AOD image along the U.S. East Coast. To make this image, we need to
combine 2 VIIRS data granules from our 2 different NetCDF files. A granule is a subset of a swath consisting of 48
scans of the VIIRS instrument. VIIRS data are distributed as granules to make them easier to work with - a full swath
file would be prohibitively large.
Uncomment the "print" command to see the names of these files.
for n in os.listdir('/workspace/'):
 filename = n
 ##print(filename)

As we can see, there are 2 NetCDF files, a "lost+found" folder, and a ".private" folder. Each NetCDF file contains
a granule of VIIRS data. We want to download all of these data using the "Dataset" function (like we did in block 4)
and a "for" loop. We will also want to avoid the "lost+found" and ".private" folders by using an "if" condition
statement. We can download our VIIRS data and plot each granule using the "contourf" function. This function takes in
the first two values as axes, the third value sets the data, the fourth value sets the color range of how the data
will be displayed, the fifth value maps it to the projection, and the sixth value sets the colormap. We can also
obtain the quality flag for each pixel and then mask out the low and medium quality data, leaving only the high
quality pixels.
file_count = 0
for n in os.listdir('/workspace/'):
 if '.nc' in n:
 # Adds one to the file_count when we find a file that we want (that contains data)
 file_count += 1
 ##file_id = Dataset('/workspace/'+ n)

 # Imports AOD data
 ##aod = file_id.variables['AOD550'][:,:]

 # Imports quality flags
 ##quality_flag = file_id.variables['QCAll'][:,:]

8

 # selects the location of all low and medium quality pixels
 ##maskHQ = (quality_flag != 0)

 # Applies quality mask to AOD data (masking all low and medium quality pixels)
 ##aodHQ = np.ma.masked_where(maskHQ, aod)

 # We can see the difference between how many high quality pixels there are as compared the total number of

pixels
 ##print('\nFile', file_count)
 ##print('All pixels:', aod.count(), ' High quality pixels:', aodHQ.count())

Function to plot data where the 1st attribute is the long values, the 2nd is the lat values, the 3rd is the color
bar range, the 4th sets the projrction, and the 5th attribute sets the color map.
 ##x1 = plt.contourf(file_id.variables['Longitude'][:,:], file_id.variables['Latitude'][:,:], aodHQ,
 ##color_range, transform=to_proj, cmap=plt.get_cmap("rainbow"))

Add colorbar (AOD is unitless so there is no need to add a colorbar label)
##plt.colorbar(x1, orientation="horizontal", fraction=0.05)

Save the plot
##plt.savefig('VIIRS-ABI-16Aug-plot.png')

To find your saved plot, click the "Tools" drop down option in the top left corner of the screen and then click the
"File uploader" option. Right-click on the copy of the cloned activity and a menu will open - left-click on the
"Attach data" option. A new window will open showing all of the files attached to the activity workbook. Right-click
on the "VIIRS-AOD-16Aug-plot" file and a menu will open - left-click on the "Download" option, and navigate to where
you want to save the png file. Then close the window by clicking on the "X" on the upper right side and return to the
Home page.

plt.show()

9

