Sehr Schweres Unwetter in NRW

Not having full command of the German language, “sehr schweres Unwetter” seems like an understatement. It translates as “very bad thunderstorm,” which in this case is like calling the Titanic a “very big boat”. Of course, if you live in the Great Plains, you probably refer to a supercell thunderstorm as “a little bit of rain and wind” but the storms that hit Nordrhein-Westfalen (NRW) on 9-10 June 2014 rival anything the toughest Oklahoman has experienced (minus the tornadoes). Also, keep in mind that Germany and the Low Countries have nowhere near the wide-open spaces the U.S. Great Plains are known for. Take 5 times the population of Oklahoma and cram them into a land area the size of Maryland. (Or, if you’re from Maryland, multiply your state’s population by three to approximate the population density of the area we’re talking about. Then ponder how anyone in that part of Germany is able to spend less than 18 hours per day stuck in traffic like you would be if you were suddenly surrounded by three times as many people.)

Let me set the scene for you. (If you’ve ever lived in the Midwest, you know the drill.) The air is hot and unbelievably humid. The sky is overcast. There is no wind to speak of, but there is a certain “electricity” in the air that tells you that a violent end to the heatwave is coming. Off in the distance, clouds lower and darken. A gentle rumbling of thunder slowly builds as the storm approaches. Lightning appears and becomes ever more frequent. Right before the storm hits, the winds pick up out of nowhere and… Wait! I don’t need to describe it. I can show it to you:

EDIT: I did need to describe it, because the videos are no longer available. If you weren’t able to see the videos before they were removed, they showed scary looking clouds and nearly constant lightning approaching Bochum. In fact, there were an estimated 113,000 lightning strikes across Germany from the storm.

Germany is, apparently, a land of iPhones and GoPros and all sorts of video recording equipment, and there is no shortage of video of the storm. There are videos of the storm approaching from different perspectives (here, here and here), the strong winds and heavy rains that are more reminiscent of a tropical storm (here, here and here), footage of the lightning in slow-motion and, because this is the Internet, a 30 min. montage of storm footage set to salsa music (although one commenter says the first footage is from a storm in 2010).

The aftermath is pretty impressive also – trees and large branches down everywhere blocking roads, crushing cars and stopping the never-late German train system. In fact, 6 people were killed – mostly by falling trees. Winds were observed in the 140-150 km h-1 range (approximately 85-90 miles per hour), which puts it just below a Category 2 hurricane according to the Saffir-Simpson scale. There were even reports of baseball sized hail, something that’s not unusual in Oklahoma, but is very rare in Europe. (Here is some pretty big hail in the town of Zülpich from earlier in the day.)

Now that you’ve used up the last 90 minutes looking at YouTube videos, let’s get down to business. What do satellites tell us about this storm?

EUMETSAT put together this animation of images from the geostationary satellite Meteosat-10:

Watch that video again, preferably in fullscreen mode. First, the white boxes highlight the supercell thunderstorms over Europe between 01:00 UTC 9 June 2014 and 08:15 UTC 10 June 2014. Right before sunset on 9 June, you can see a storm moving north out of France into Belgium that seems to explode as it heads towards the Netherlands and western Germany. This is our “schweres Unwetter”. The second thing to notice is where that storm is at 02:00 UTC on the 10th. That was the time that VIIRS passed overhead.

So, without any more bloviating, here’s the high-resolution infrared (I-5) image from VIIRS:

VIIRS I-5 image from 02:07 UTC 10 June 2014

VIIRS I-5 image of severe thunderstorms over Europe from 02:07 UTC 10 June 2014

The storm that caused all the damage over Nordrhein-Westfalen has weakened and is now over northeastern Germany on its way to Poland. But, a second impressive supercell complex is pounding Belgium and the Netherlands, and taking aim at western Germany once again.

The coldest pixels are 196.5 K (-76.7 °C or -106 °F) in the storm over Benelux and 198.7 K (-74.5 °C or -102.1 °F) in the storm over northeast Germany. Another impressive thing about these storms is their size relative to the size of these countries. That Benelux storm looks like it’s at least five times the size of Luxembourg and as big as Belgium! (And I’m not counting the area of the anvil, which is even larger. I’m only counting the area containing overshooting tops.)

Since it’s nighttime, what did the Day/Night Band see? Well, the answer depends on how you display the data. You see, we’re approaching the Summer Solstice in the Northern Hemisphere, where the days are long and twilight encroaches the nighttime overpasses at these latitudes. If you try to scale the radiances from lowest = black to highest = white, you get something like this:

VIIRS Day/Night Band image, taken 02:07 UTC 10 June 2014

VIIRS Day/Night Band image, taken 02:07 UTC 10 June 2014. Radiance values are displayed and scaled according to text above.

That’s not very helpful because the radiance values vary by 6 orders of magnitude across the scene and we only have 256 colors to work with to relay that information. But, we can take advantage of the fact that the Day/Night Band radiance values are, to the first order, a function of the solar and lunar zenith angles, and use this as the basis for a “dynamic scaling” that compares the observed radiance with an expected maximum and minimum radiance value that is a function of those angles. (In case you’re interested, the dynamic scaling algorithm used here is based around the error function.) This allows you to produce something like this:

VIIRS Day/Night Band image, taken 02:07 UTC 10 June 2014

VIIRS Day/Night Band image, taken 02:07 UTC 10 June 2014. This image uses dynamic scaling as described in the text.

Here, we’ve lost some quantitative information (colors no longer represent specific radiance values) but we’ve gained valuable qualitative information.  Now we can see where the storms are! Notice the shadows in the overshooting tops of our Benelux storm – right where the coldest pixels are in the infrared image. We can see some of the city lights, but not others, because the twilight encroaching from the northeast is brighter than the cities in that part of the image. (It is easy to pick out London and Paris, though.) If you read the previous post, you might be wondering why there are no mesospheric waves with these storms. That’s because there is too much twilight (and moonlight) to see the airglow. (There’s also the possibility that the stratosphere and mesosphere weren’t conducive for vertically propagating waves, but you wouldn’t be able to tell that under these lighting conditions.)

Some people like to combine the infrared with the Day/Night Band into a single image. This is done by changing the opacity of one of the images and overlaying it on the other. Here’s an example of what that looks like using the dynamically scaled Day/Night Band image:

VIIRS combined IR/DNB image from 02:07 UTC 10 June 2014

VIIRS combined IR/DNB image from 02:07 UTC 10 June 2014

The light/shadow effect of the visible information adds a sort-of 3-D effect to the infrared images and, since this is the Day/Night Band, it can show where the storms are in relation to the urban areas. Here, it seems to work better for the Benelux storm than it does for the other one. (Of course, it would be better without the twilight. And, it works best with a full moon, which occurred three days later.)

Of course, if you have access to the Near Constant Contrast imagery, you don’t have to worry about scaling. The imagery is useful as-is:

VIIRS NCC image, taken at 02:07 UTC 10 June 2014

VIIRS NCC image, taken at 02:07 UTC 10 June 2014

And the combined IR/NCC image looks like this:

Combined IR/NCC image from 02:07 UTC 10 June 2014

Combined IR/NCC image from 02:07 UTC 10 June 2014

In case you’re interested, there are additional videos, animations and images of these storms from the Meteosat High Resolution Visible (HRV) channel at the EUMETSAT Image Library.


Catatumbo Lightning in the Day/Night Band

You may have noticed that many of the recent posts have featured imagery from the VIIRS Day/Night Band (DNB). That’s because the nighttime imagery produced by the DNB is so awesome! The DNB has seen clouds at night, auroras, forest fires, oil and gas flares, and even volcanic eruptions. Many of the previous images shown have included high resolution views of city (and even small town) lights. This post shows another interesting facet of DNB imagery: lightning. More specifically, Catatumbo lightning.

For those of you who don’t know (and didn’t click on that last link), Catatumbo lightning is one of the world’s most frequent lightning displays, with thunderstorms forming over the Catatumbo River in Venezuela an average of 160 nights per year. The lightning displays last up to 9 hours, beginning shortly after dusk. The lightning is nearly continuous and so vivid and reliable that it has been called the “Lighthouse of Maracaibo” or the “Catatumbo Lighthouse”, as fisherman and sailors have historically used it as a navigation aid. It is said that the locals were saved from an invasion by Sir Francis Drake in 1595, as the invading navy could not covertly enter Lake Maracaibo at night due to all the bright lightning. There is even a campaign to make Catatumbo lightning a UNESCO world heritage site. The lightning is so prominent, the state of Zulia in Venezuela has included it in their flag and coat of arms. Two years ago, the storms suddenly stopped for several months, causing mass panic in the streets- I mean, on the river- I mean… um, actually the villagers in this video don’t seem to care all that much.

Earlier this month, when the moon was about 80% full, Suomi NPP passed over Lake Maracaibo at night and, sure enough, a thunderstorm was present right over the mouth of the Catatumbo River.

VIIRS I-05 image of thunderstorms near Lake Maracaibo, Venezuela taken 06:44 UTC 10 May 2012

VIIRS I-05 image of thunderstorms near Lake Maracaibo, Venezuela taken 06:44 UTC 10 May 2012

This image, taken from the high resolution imagery IR-window channel (I-05, 11.45 µm) on 10 May 2012, shows the deep convection over Venezuela and Colombia. The largest thunderstorm near the center of the image formed along the shore of Lake Maracaibo, near the mouth of the Catatumbo River. Here’s what the DNB saw at the same time:

VIIRS Day/Night Band image of thunderstorms near Lake Maracaibo, Venezuela taken 06:44 UTC 10 May 2012

VIIRS Day/Night Band image of thunderstorms near Lake Maracaibo, Venezuela taken 06:44 UTC 10 May 2012

The bright, almost rectangular streaks in the image are lightning strikes. The red arrow points out a lightning strike from the Catatumbo storm – a “Catatumbo lightning” strike, if you will.

The blocky appearance of lightning is due to the fact that VIIRS is a scanning radiometer. As the instrument scans the swath of the Earth that it sees, a bright, transient flash (such as from lightning) will show up in the along-scan direction as an individual streak of light in each sensor. The DNB has 16 different sensors that scan the swath simultaneously, and since lightning typically stretches over a large enough area to be detected by all of them, you get 16 different streaks all lined up next to each other. By the time the sensors have rotated back around for the next scan, the lightning flash has ended, producing abrupt edges in the direction along the satellite track. Compare this with the DMSP Operational Linescan System, which produces much more “streaky” lightning.

In addition to the “Catatumbo lightning”, you can see several other lightning flashes in the two deepest thunderstorms over Colombia. These are far enough away from Lake Maracaibo that they probably don’t count as Catatumbo lightning.

Other interesting features can be seen in these images as well. The moon was bright enough to cast shadows in the DNB image, allowing for the detection of the overshooting tops. These match-up with the coldest brightness temperatures in the I-05 image (which show up as dark blue to pure white in this color scale). A few pixels in the largest storm over Colombia (the one with two visible lightning flashes) have managed to make it to pure white on the color scale, indicating temperatures below 190 K (-83 °C). The dark blue pixels indicate brightness temperatures between 196 and 190 K (-77 to -83 °C). Brrr.

Overshooting tops exist when the convection is so vigorous, it peaks out above the anvil of the storm and penetrates the stable layer above (which is usually the stratosphere in storms this deep). In addition to acting as an indicator for severe weather, overshooting tops are important for energy and chemical transport between the troposphere and stratosphere.

It’s also interesting to see what looks like thin cirrus over the Caribbean Sea near Panama (left center of the image) that show up in the infrared (I-05) image, but not in the DNB. Plus, a number of cold clouds over Venezuela would appear to be optically thick due to their low brightness temperatures in the infrared image (yellow starts at 245 K down to green at 214 K), but they are optically thin enough to see city lights below in the DNB image. Awesome!

Remote Islands, part I: Easter Island

With the I-bands having ~375 m resolution at nadir, VIIRS is a powerful instrument. We have already seen the detailed imagery it produces of severe thunderstorms and tropical cyclones. But, you might ask (particularly if you’re thinking you need a vacation), what remote islands is it able to see?

Well, it can see Easter Island. Yes, the one with all the big-headed statues (moai).

False color RGB composite (I1-I2-I3) image of Easter Island, 20:44 UTC 25 April 2012

False color RGB composite (I1-I2-I3) image of Easter Island, 20:44 UTC 25 April 2012

At approximately 24.6 km x 12.3 km, VIIRS has no problem identifying the triangular island, as this false color (I1-I2-I3) RGB composite shows. In this image, taken at 20:44 UTC on 25 April 2012, the 163 km2 island appears to be dwarfed by a thunderstorm just to its north.  If you zoom in, you can see several small cumulus clouds over the island along with their shadows. Unfortunately, it is not quite the resolution needed to see the individual moai.

As Easter Island is in the southern hemisphere, it is autumn there now. The average high temperature is down to 76 °F (from a summertime peak of 79 °F in February). April and May are listed as the wettest months, so an image of Easter Island not obscured by clouds this time of year may be a rare occurrence.