On the Disappearance of Lake Mille Lacs

Two weeks ago, one of Minnesota’s 10,000 lakes disappeared, leaving them with only 9,999. And, it wasn’t a small one, either. It was the state’s second largest inland lake. But, this is not like Goose Lake, which actually did dry up. The lake in question simply became temporarily invisible. So, no need to panic, fishing and boating enthusiasts. But, as you’ll see, the term “invisible” can be just as ambiguous as the term “lake”.

Let’s start with the fact that Minnesota doesn’t have 10,000 lakes. Their slogan is a lie! Depending on how you define a lake, Minnesota has 21,871, or 15,291, or 11,842. But, Wisconsin might have more (or less) and likes to argue with Minnesota about that fact. Michigan might have way more (62,798) or way less (6,537). And, they all pale in comparison to the number of lakes in Alaska. Here is an article that explains the situation nicely.

With that out of the way, today’s story comes from “current GOES” and what one colleague noticed during a cursory examination of GOES Imager images. Here’s the GOES-13 visible image from 19:30 UTC 27 January 2017:

GOES-13 visible image, taken 19:30 UTC 27 January 2017

GOES-13 visible image, taken 19:30 UTC 27 January 2017

Compare that with the visible image from 19:15 UTC 2 February 2017:

GOES-13 visible image, taken 19:15 UTC 2 February 2017

GOES-13 visible image, taken 19:15 UTC 2 February 2017

Notice anything different between the two images over Minnesota? No? Then let’s flip back-and-forth between the two, with a giant, red arrow pointing to the area in question:

Animation of the above images

Animation of the above images. The red arrow points to Lake Mille Lacs.

The red arrow is pointing to the location of Lake Mille Lacs. You might know it as Mille Lacs Lake. (Either way, it’s name is redundant; “Mille Lacs” is French for “Thousand Lakes,” making it Thousand Lakes Lake.) As the above images show, on 27 January 2017 Lake Mille Lacs was not visible in the GOES image. On 2 February 2017, it was. They both look like clear days, so what happened? Why did Lake Mille Lacs disappear?

As I said before, the lake didn’t dry up. It simply became temporarily invisible. But, this requires a discussion about what it means to be “visible”. Lake Mille Lacs shows up in the image from 2 February 2017 because it appears brighter than the surrounding land. That’s because the lake is covered with snow. Aren’t the surrounding land areas also covered with snow? Yes. However, the surrounding lands also have trees which obscure the snow and shade the background surface, which is why forested areas appear darker even when there is snow.

That leads to this question: why does the lake appear darker on 27 January? Because it rained the week before. Want proof? Look at the almanac for Brainerd (NW of Lake Mille Lacs) for the period of 18-22 January 2017. Every day made it above freezing along with several days of rain. Much of the snow melted (including the snow on the lake). Want more proof? Here’s a video taken on the lake from 20 January 2017. See how Minnesotans drive around on frozen lakes – even in the rain? And, see how wet and slushy the surface of the ice is? This makes it appear darker than when there is fresh snow on top. If you’ve ever seen a pile of slush, you know it’s not bright white, but a dull gray color. The less reflective slush on the lake reduced the apparent brightness down to the level of the surrounding woodlands. That’s why the lake appeared to disappear.

Now, this is “current GOES” imagery. We can do better with VIIRS, since we have more channels to play with. And, as we all know, GOES-R successfully launched back in November 2016 and is now in orbit as GOES-16. This satellite has the first Advanced Baseline Imager (ABI) in space. The ABI has many of the same channels as VIIRS, so the following discussion applies to both instruments. “New” GOES will have up to 500 m resolution in the visible, which is much closer to VIIRS (375 m) than “current” GOES (1 km). That’s another thing to think about when we talk about what is visible and what isn’t.

Here are the VIIRS high-resolution visible (I-1) images that correspond to the GOES images above:

VIIRS high-resolution visible (I-1) image, taken 19:35 UTC 27 January 2017

VIIRS high-resolution visible (I-1) image, taken 19:35 UTC 27 January 2017

VIIRS high-resolution visible (I-1) image, taken 19:22 UTC 2 February 2017

VIIRS high-resolution visible (I-1) image, taken 19:22 UTC 2 February 2017

Although, we should probably focus on Minnesota. Here are the cropped images side-by-side:

Comparison between VIIRS high-resolution visible (I-1) images

Comparison between VIIRS high-resolution visible (I-1) images

Remember: you can click on any image to bring up the full resolution version.

Although Lake Mille Lacs is just barely visible in the image from 27 January, it’s much easier to see on 2 February. So, we get the same story from VIIRS that we got with GOES, which is good. That means we don’t have a major fault of a multi-million dollar satellite. It’s a “fault” of the radiative properties of slush, combined with the low resolution of the GOES images above.

Keep your eyes also on the largest inland lake in Minnesota: Red Lake. The Siamese twins of Upper and Lower Red Lake didn’t get as much rain as Lake Mille Lacs and its snow never fully melted, so its appearance doesn’t change much between the two images.

The GOES Imager also has a longwave infrared (IR) channel, and a mid-wave IR channel similar to VIIRS. Since the goal of this is not to compare GOES to VIIRS, but to show how these lakes appear at different wavelengths, we’ll stick to the VIIRS images. Here are the high-resolution VIIRS longwave IR images from the same times:

Comparison of VIIRS high-resolution longwave IR (I-5) images

Comparison of VIIRS high-resolution longwave IR (I-5) images

In both images, the lakes are nearly invisible! This is because the longwave IR is primarily sensitive to temperature changes, and the slush is nearly the same temperature as the background land surface. With no temperature contrast to key on, the lake looks just like the surrounding land. Although, if you zoom in and squint, you might say that Lake Mille Lacs is actually more visible in the image from 27 January. 27 January was a warmer day (click back on that Brainerd almanac), and the surrounding land warmed up more than the slushy ice on the lake. 2 February was much colder on the lake and the land. But, let this be a lesson that, just because the lake doesn’t show up, it doesn’t mean the lake doesn’t exist!

Something interesting happens when you look at the mid-wave IR. All the lakes are visible, and take on a similar brightness, no matter how slushy they are:

Comparison of VIIRS high-resolution mid-wave IR (I-4) images

Comparison of VIIRS high-resolution mid-wave IR (I-4) images

In this wavelength range, both reflection of solar energy and thermal emission are important. Snow, ice and slush are not reflective and they are cold, making the lakes appear darker than the surrounding land. The fact that the land surrounding Lake Mille Lacs and Red Lake is darker on 2 February than it is on 27 January is further proof that it was a colder day with more snow on the ground.

Here’s where we get to the advantage of VIIRS (and, soon, GOES-16): it has more channels in the shortwave and near-IR. The 1.6 µm “snow and ice” band has a lot of uses, and I expect it will be a popular channel on the ABI. Here’s what the high-resolution channel looks like from VIIRS:

Comparison of VIIRS high-resolution near-IR (I-3) images

Comparison of VIIRS high-resolution near-IR (I-3) images

Compare these with the visible images above. Now, the reverse is true: Lake Mille Lacs is easier to see in the first image than the second! You can’t call it invisible at all on 27 January! The presence of liquid water makes the slush very absorbing – more than even ice and snow – so it appears nearly black. In fact, it’s hard to tell the difference between the slushy ice-covered Lake Mille Lacs, and the open waters of Lake Superior, which has no ice or slush on it. On 2 February, we see the fresh layer of snow on Lake Mille Lacs has increased the lake’s reflectivity, but it’s still slightly darker than the surrounding snow covered land. This is for two reasons: snow and ice are absorbing at 1.6 µm and the surrounding woodlands are more reflective.

Here’s a better comparison between the “visible” and the “snow and ice” bands:

Comparison of VIIRS I-1 and I-3 images (animation)

Comparison of VIIRS I-1 and I-3 images (animation)

You’ll have to click on the image to see it animate between the two.

Here’s an animation showing all five high-resolution bands on VIIRS for the two days:

Comparison of VIIRS high-resolution imagery channels (animation)

Comparison of VIIRS high-resolution imagery channels (animation)

Again, you have to click on it to see it animate.

Now, we can combine channels into RGB composites that highlight the snow and ice. We’ve discussed several RGB composites for snow detection before. And, we have been looking at the Natural Color RGB for a long time. This composite combines the high-resolution bands I-1 (0.64 µm), I-2 (0.86 µm) and I-3 (1.6 µm) as the blue, green and red components of the image, respectively. Here’s what it looks like for these two days:

Comparison of VIIRS Natural Color RGB composites

Comparison of VIIRS Natural Color RGB composites using high-resolution imagery bands

Lake Mille Lacs is visible on both days – first because it’s darker than the surroundings, then because it’s brighter. This composite demonstrates how vegetation can obscure the surface snow – it appears more brown in deciduous forests (and bare fields with no snow) and green in coniferous areas. But, the important point is that the wetter the snow and slush, the darker it appears. The fresher the snow, the brighter cyan color it has.

This is exaggerated in the “Snow RGB” that combines moderate resolution bands M-11 (2.25 µm), M-10 (1.6 µm) and M-7 (0.86 µm):

Comparison of VIIRS "Snow RGB" composites of channels M-11, M-10 and M-7

Comparison of VIIRS “Snow RGB” composites of channels M-11, M-10 and M-7

M-11 (2.25 µm) is sold as a “cloud particle size” band, but it also helps with snow and ice detection (and fires). The presence of water in melting snow enhances the darkening at 2.25 µm. In this RGB, that means melting snow appears more red, while fresh snow appears more pink. The slush on Lake Mille Lacs appears very dark – almost as dark as Lake Superior – so a Minnesotan might be forgiven if they see the image from 27 January and decide not to drive out on the lake to go ice fishing because they think the ice isn’t there.

Of course, VIIRS also gives us the True Color RGB – the most intuitive RGB composite – that combines the blue-, green- and red-wavelength visible bands: M-3 (0.48 µm), M-4 (0.55 µm) and M-5 (0.67 µm). If you’re curious, here’s what that looks like:

Comparison of VIIRS True Color RGB composite images

Comparison of VIIRS True Color RGB composite images

The slush on Lake Mille Lacs looks just like dirty slush and the fresh snow looks just like snow. (As it should!)

So, the second biggest lake in Minnesota never disappeared – it just changed its surface properties. And, it will always be “visible” to VIIRS in one channel or another – unless it’s cloudy (or it completely dries up).

December Fluff

By now, you probably know the drill: a little bit of discussion about a particular subject, throw in a few pop culture references, maybe a video or two, then get to the good stuff – high quality VIIRS imagery. Then, maybe add some follow-up discussion to emphasize how VIIRS can be used to detect, monitor, or improve our understanding of the subject in question. Not today.

You see, VIIRS is constantly taking high quality images of the Earth (except during orbital maneuvers or rare glitches). There isn’t enough time in a day to show them all, or go into a detailed discussion as to their relevance. And, nobody likes to read that much anyway. So, as we busily prepare for the upcoming holidays, we’re going to skip the in-depth discussion and get right to the good stuff.

Here then is a sample of interesting images taken by VIIRS over the years that weren’t featured on their own dedicated blog posts. Keep in mind that they represent the variety of topics that VIIRS can shed some light on. Many of these images represent topics that have already been discussed in great detail in previous posts on this blog. Others haven’t. It is important to keep in mind… See, I’m starting to write too much, which I said I wasn’t going to do. I’ll shut up now.

Without further ado, here’s a VIIRS Natural Color image showing a lake-effect snow event that produced a significant amount of the fluffy, white stuff back in November 2014:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

As always, click on the image to bring up the full resolution version. Did you notice all the cloud streets? How about the fact that the most vigorous cloud streets have a cyan color, indicating that they are topped with ice crystals? The whitish clouds are topped with liquid water and… Oops. I’m starting to discuss things in too much detail, which I wasn’t going to do today. Let’s move on.

Here’s another Natural Color RGB image using the high-resolution imagery bands showing a variety of cloud streets and wave clouds over the North Island of New Zealand:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

Here’s a Natural Color RGB image showing a total solar eclipse over Scandinavia in 2015:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

Here’s a VIIRS True Color image and split-window difference (M-15 – M-16) image showing volcanic ash from the eruption of the volcano Sangeang Api in Indonesia in May 2014:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 - M-16) image (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 – M-16) image (06:20 UTC 31 May 2014)

Here’s a VIIRS True Color image showing algae and blowing dust over the northern end of the Caspian Sea (plus an almost-bone-dry Aral Sea):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

Here is a high-resolution infrared (I-5) image showing a very strong temperature gradient in the Pacific Ocean, off the coast of Hokkaido (Japan):

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

The green-to-red transition just southeast of Hokkaido represents a sea surface temperature change of about 10 K (18 °F) over a distance of 3-5 pixels (1-2 km). This is in a location that the high-resolution Natural Color RGB shows to be ice- and cloud-free:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

Here’s a high-resolution infrared (I-5) image showing hurricanes Madeline and Lester headed toward Hawaii from earlier this year:

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

Here are the Fire Temperature RGB (daytime) and Day/Night Band (nighttime) images of a massive collection of wildfires over central Siberia in September 2016:

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

Here is a 5-orbit composite of VIIRS Day/Night Band images showing the aurora borealis over Canada (August 2016):

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Here is a view of central Europe at night from the Day/Night Band:

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

And, finally, for no reason at all, here’s is a picture of Spain wearing a Santa hat (or sleeping cap) made out of clouds:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

There you have it. A baker’s ten examples showing a small sample of what VIIRS can do. No doubt it will be taking more interesting images over the next two weeks, since it doesn’t stop working over the holidays – even if you and I do.

Single-Purpose Flour

Think of a snowflake. What happens when that snowflake hits the ground? Now, picture other snowflakes – millions of them – all hitting the ground and piling up on top of each other, crushing our first poor snowflake. Skiers love to talk (and dream) about “fresh powder.” But, what happens when the “powder” isn’t so fresh?

Those delicate, little snow crystals we imagine (or look at directly, if we click on links included in the text) undergo a transformation as soon as they hit the ground. Compression from the weight of the snow above, plus the occasional partial thaw and re-freeze cycle (when temperatures are in the right range), breaks up the snow flakes and converts the 6-pointed crystals into more circular grains of snow. As more and more snow accumulates on top, the air in between the individual snowflakes/grains (which is what helps make it a good insulator) gets squeezed out, making the snow more dense. If enough time passes and enough snow accumulates, individual snow grains can fuse together. These bonded snow grains are called “névé.” If this extra-dense snow can survive a whole summer without melting, then a second winter of this compaction and compression will squeeze out more air and fuse more snow grains, creating the more dense “firn.” After 20 or 30 years of this, what once was a collection of fragile snowflakes becomes a nearly solid mass of ice that we call a “glacier.” Glaciers can be made up of grains that are several inches in length.

But, you don’t need to hear me say it (or read me write it), you can watch a short video where a guy in a thick Scottish accent explains it. (Did you notice his first sentence was a lie? Snow is made of frozen water, so glaciers are made of frozen water, since they are made of snow. I think what he means is that glaciers aren’t formed the same way as a hockey rink, but the way he said it is technically incorrect.) At the end of the video, the narrator hints at why we are looking at glaciers today: glaciers have the power to grind down solid rock.

When a glacier forms on a non-level surface, gravity acts on it, pulling it down the slope. This mass of ice and friction from the motion acts like sandpaper on the underlying rock, converting the rock into a fine powder known as “glacial flour” or, simply, “rock flour.” In the spring and summer months, the meltwater from the glacier collects this glacial flour and transports it downstream, where it may be deposited on the river’s banks. During dry periods, it doesn’t take much wind to loft these fine particles of rock into the air, creating a unique type of dust storm that is not uncommon in Alaska. One that can be seen by satellites.

And, wouldn’t you know it, a significant event occurred at the end of October. Take a look at this VIIRS True Color image from 23 October 2016:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:24 UTC 23 October 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:24 UTC 23 October 2016)

See the big plume of dust over the Gulf of Alaska? Here’s a zoomed in version:

Zoomed in version of above image.

Zoomed in version of above image.

That plume of dust is coming from the Copper River delta. The Copper River is fed by a number of glaciers in Wrangell-St. Elias National Park, plus a few in the Chugach Mountains so it is full of glacial sediment and rock flour (as evidenced by this photo). And, it’s amazingly full of salmon. (How do they see where they’re going when they head back to spawn? And, that water can’t be easy for them to breathe.)

Notice also that we have the perfect set-up for a glacial flour dust event on the Copper River. You can see a low-pressure circulation over the Gulf of Alaska in the above picture, plus we have a cold, Arctic high over the Interior shown in this analysis from the Weather Prediction Center. For those of you familiar with Alaska, note that temperatures were some 30 °F warmer during the last week in October in Cordova (on the coast) than they were in Glennallen (along the river ~150 miles inland). That cold, dense, high-pressure air over the interior of Alaska is going to seek out the warmer, less dense, low-pressure air over the ocean – on the other side of the mountains – and the easiest route to take is the Copper River valley. The air being funneled into that single valley creates high winds, which loft the glacial flour from the river banks into the atmosphere.

Now, depending on your preferences, you might think that the dust shows up better in the Natural Color RGB composite:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:24 UTC 23 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:24 UTC 23 October 2016).

But, everyone should agree that the dust is even easier to see the following day:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:01 UTC 24 October 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:01 UTC 24 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:01 UTC 24 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:01 UTC 24 October 2016)

You can also see a few more plumes start to show up to the southeast, closer to Yakutat.

Since Alaska is far enough north, we get more than one daytime overpass every day. Here’s the same scene on the very next orbit, about a 100 minutes later:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:42 UTC 24 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:42 UTC 24 October 2016)

Notice that the dust plume appears darker. What is going on? This is a consequence of the fact that glacial flour, like many aerosol particles, has a tendency to preferentially scatter sunlight in the “forward” direction. At the time of the first orbit (21:01 UTC), both the sun and the dust plume are on the left side of the satellite. The sunlight scatters off the dust in the same (2-dimensional) direction it was traveling and hits the VIIRS detectors. In the second orbit (22:42 UTC), the dust plume is now to the right of the satellite, but the sun is to the left. In this case, forward scattering takes the sunlight off to the east, away from the VIIRS detectors. With less backward scattering, the plume appears darker. This has a bigger impact on the Natural Color imagery, because the Natural Color RGB uses longer wavelength channels where forward scattering is more prevalent. Here’s the True Color image from the second orbit:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (22:42 UTC 24 October 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (22:42 UTC 24 October 2016)

The plume is a little darker than the first orbit, but not by as much as in the Natural Color imagery. Here are animations to show that:

Animation of VIIRS True Color images (24 October 2016)

Animation of VIIRS True Color images (24 October 2016)

Animation of VIIRS Natural Color images (24 October 2016)

Animation of VIIRS Natural Color images (24 October 2016)

There are many other interesting details you can see in these animations. For one, you can see turbid waters along the coast in the True Color images that move with the tides and currents. These features are absent in the Natural Color because the ocean is not as reflective at these longer wavelengths. You can also see the shadows cast by the mountains that move with the sun. Some of the mountains seem to change their appearance because VIIRS is viewing them from a different side.

The dust plumes were even more impressive on 25 October 2016, making this a three-day event. The same discussion applies:

VIIRS True Color composite of channels M-3, M-4 and M-5 (20:43 UTC 25 October 2016)

VIIRS True Color composite of channels M-3, M-4 and M-5 (20:43 UTC 25 October 2016)

VIIRS True Color composite of channels M-3, M-4 and M-5 (22:26 UTC 25 October 2016)

VIIRS True Color composite of channels M-3, M-4 and M-5 (22:26 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (20:43 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (20:43 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:26 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:26 UTC 25 October 2016)

Full disclosure, yours truly drove through a glacial flour dust storm along the Delta River on the north side of the Alaska Range back in 2015. Even though it was only about a mile wide, visibility was reduced to only a few hundred yards beyond the hood of my car. It felt as dangerous as driving through any fog. The dust event shown here was not a hazard to drivers, since it was out over the ocean, but it was a hazard to fisherman. Being in a boat near one of these river deltas means dealing with high winds and high waves. To forecasters, these dust plumes provide information about the wind on clear days (when cloud-track wind algorithms are no help), which is useful in a state with very few surface observing sites to take advantage of.

The last remaining issue for the day is one of terminology. You see, “glacial flour dust storm” is a mouthful, and acronyms aren’t always the best solution. (GFDS, anyone?) “Haboob” covers desert dust. “SAL” or “bruma seca” covers Saharan dust specifically. So, what should we call these dust events? Something along the lines of “rock flour”, only more proactive! And, Dusty McDustface is right out!

Watch for Falling Rock

Q: When a tree falls in the forest and nobody is around to hear it, does it make a sound?

A: Yes.

That’s an easy question to answer. It’s not a 3000-year-old philosophical conundrum with no answer. Sound is simply a pressure wave moving through some medium (e.g. air, or the ground). A tree falling in the forest will create a pressure wave whether or not there is someone there to listen to it. It pushes against the air, for one. And it smacks into the ground (or other trees), for two. These will happen no matter who is around. As long as that tree doesn’t fall over in the vacuum of space (where there is nothing to transmit the sound waves and nothing to crash into), that tree will make “a sound”. (There are also sounds that humans cannot hear. Think of a dog whistle. Does that sound not exist because a human can’t hear it?)

What if it’s not a tree? What if it’s 120 million metric tons of rock falling onto a glacier? Does that make a sound? To quote a former governor, “You betcha!” It even causes a 2.9 magnitude earthquake!

That’s right! On 28 June 2016, a massive landslide occurred in southeast Alaska. It was picked up on seismometers all over Alaska. And, a pilot who regularly flies over Glacier Bay National Park saw the aftermath:

If you didn’t read the articles from the previous links, here’s one with more (and updated) information. And, according to this last article, rocks were still falling and still making sounds (“like fast flowing streams but ‘crunchier'”) four days later. That pile of fallen rocks is roughly 6.5 miles long and 1 mile wide. And, some of the rock was pushed at least 300 ft (~100 m) uphill on some of the neighboring mountain slopes.

Of course, who needs pilots with video cameras? All we need is a satellite instrument known as VIIRS to see it. (That, and a couple of cloud-free days.) First, lets take a look at an ultra-high-resolution Landsat image (that I stole from the National Park Service website and annotated):

Glacier Bay National Park as viewed by Landsat (courtesy US National Park Service)

Glacier Bay National Park as viewed by Landsat (courtesy US National Park Service)

Of course, you’ll want to click on that image to see it at full resolution. The names I’ve added to the image are the names of the major (and a few minor) glaciers in the park. The one to take note of is Lamplugh. Study it’s location, then see if you can find it in this VIIRS True Color image from 9 June 2016:

VIIRS True Color RGB composite image of channels M-3, M-4 and M-5 (20:31 UTC 9 June 2016), zoomed in at 200%.

VIIRS True Color RGB composite image of channels M-3, M-4 and M-5 (20:31 UTC 9 June 2016), zoomed in at 200%.

Anything? No? Well, how about in this image from 7 July 2016:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:42 UTC 7 July 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:42 UTC 7 July 2016), zoomed in at 200%

I see it! If you don’t, try this “Before/After” image overlay, by dragging your mouse from side to side:

afterbefore

That dark gray area in the image from 7 July 2016 that the arrow is pointing to is the Lamplugh Glacier landslide! If the “Before/After” overlay doesn’t work, try refreshing the page, or look at this animated GIF:

Animation of VIIRS True Color images highlighting the Lamplugh Glacier landslide

Animation of VIIRS True Color images highlighting the Lamplugh Glacier landslide

Of course, with True Color images, it can be hard to tell what is cloud and what is snow (or glacier) and with VIIRS you’re limited to 750 m resolution. We can take care of those issues with the high-resolution (375 m) Natural Color images:

Animation of VIIRS Natural Color images of the Lamplugh Glacier landslide

Animation of VIIRS Natural Color images of the Lamplugh Glacier landslide

Make sure you click on it to see the full resolution. If you want to really zoom in, here is the high-resolution visible channel (I-1) imagery of the event:

Animation of VIIRS high-resolution visible images of the Lamplugh Glacier landslide

Animation of VIIRS high-resolution visible images of the Lamplugh Glacier landslide

You don’t even need an arrow to point it out. Plus, if you look closely, I think you can even see some of the dust coming from the slide.

That’s what 120 million metric tons of rock falling off the side of a mountain looks like, according to VIIRS!

The Sirocco and the Giant Bowl of Dust

As mentioned before on this blog, there are typhoons, hurricanes, and cyclones, and they’re all basically the same thing. They’re just given a different name depending on where they occur in the world. Similarly, there are many different names for winds (not counting the classification of wind speeds developed by a guy named Beaufort). There’s the Chinook, the Santa Ana, the bora, the föhn (or foehn), the mistral, the zonda, the zephyr and the brickfielder. (A more complete list is here.) Some of these winds are different names for the same phenomenon occurring in different parts of the world, like the föhn, the chinook, the zonda and the Santa Ana. Others are definitely different phenomena, with different characteristics (compare the mistral with the brickfielder), but they all have the same basic cause: the atmosphere is constantly trying to equalize its pressure.

The Mediterranean is home to wide variety of named winds, one of which is the sirocco (or scirocco). (Europe is home to wide variety of languages, so this wind is also known as “ghibli,” “jugo” [pronounced “you-go”], “la calima” and “xlokk” [your guess is as good as mine].) Sirocco is the name given to the strong, southerly or southeasterly wind originating over northern Africa that typically brings hot, dry air and, if it’s strong enough, Saharan dust to Europe. Of course, after picking up moisture from the Mediterranean, the wind becomes humid, making life unpleasant for people along the north shore. Hot, humid and full of dust. Perhaps it’s no surprise that the sirocco is believed to be a cause of insomnia and headaches.

Now, I don’t know how hot it was, but an intense low pressure system passed through the Mediterranean around Leap Day and, out ahead of it, strong, southerly winds carried quite a bit of dust from northern Africa into Italy.  Here’s what it looked like in Algeria. And here’s what it looked like in Salento. See if you can see that dust in these True Color VIIRS images:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:09 UTC 28 February 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:09 UTC 28 February 2016).

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (11:48 UTC 29 February 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (11:48 UTC 29 February 2016)

No problem, right? With True Color imagery, the dust is usually easy to identify and distinguish from clouds and the ocean because it looks like dust. It’s the same color as the sky over Salento, Italy in that video I linked to. The top image shows multiple source regions of dust (mostly Libya, with a little coming from Tunisia) being blown out over the sea. The second image shows one concentrated plume being pulled into the clouds over the Adriatic Sea, headed for Albania and Greece.

By the way, this storm system brought up to 2 meters (6.5 feet) of snow to northern Italy, and even brought measurable snow to Algeria! Africa and Europe made a trade: you take some of my dust, and I’ll take some of your snow.

But, this wasn’t the worst dust event to hit Europe recently. Here’s what the VIIRS True Color showed over Spain and Portugal on 21 February 2016:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:40 UTC 21 February 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:40 UTC 21 February 2016).

And VIIRS wasn’t the only one to see this dust. Here’s a picture taken by Tim Peake, an astronaut on the International Space Station. Again, it’s easy to pick out the dust because it almost completely obscures the view of the background surface. But, what if the background surface is dust colored?

We switch now to the other side of the world and the Takla Makan desert in China, where the dust has been blowing for the better part of a week:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:11 UTC 4 March 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:11 UTC 4 March 2016).

Can you tell what is dust and what is the desert floor? Can you see the Indian Super Smog on the south side of the Himalayas? Here is the same scene on a clear (no dust) day:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:49 UTC 2 March 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:49 UTC 2 March 2016).

There is a subtle difference there, but you need good eyesight to see it. It might be easier to see if you loop the images:

Animation of VIIRS True Color images (1-7 March 2016)

Animation of VIIRS True Color images of the Takla Makan desert (1-7 March 2016).

You’ll have to click on the image to see it animate.

Did you notice the dark brown areas surrounding the Takla Makan? Those are areas that have green vegetation during the summer. Notice how they become completely obscured by the dust as the animation progresses. That’s one one way to tell that there’s dust there. But, as we have seen before, there are other ways to see the dust.

There’s EUMETSAT’s Dust RGB composite applied to VIIRS:

Animation of VIIRS EUMETSAT Dust RGB images (1-7 March 2016)

Animation of VIIRS EUMETSAT Dust RGB images of the Takla Makan desert (1-7 March 2016).

That’s another animation, by the way, so you’ll have to click on it to see it animate. The same is true for the Dynamic Enhanced Background Reduction Algorithm (DEBRA), which we also talked about before:

Animation of VIIRS DEBRA Dust Product images (1-7 March 2016)

Animation of VIIRS DEBRA Dust Product images of the Takla Makan desert (1-7 March 2016)

But, there’s one more dust detection technique we have not discussed before: the “blue light absorption” technique:

Animation of VIIRS Blue Light Dust images (1-7 March 2016)

Animation of VIIRS Blue Light Dust images of the Takla Makan desert (1-7 March 2016).

The Blue Light Dust detection algorithm keys in on the fact that many different kinds of dust absorb blue wavelengths of light more than the longer visible wavelengths. It uses this information to create an RGB composite where dust appears pastel pink, clouds and snow appear blueish and bare ground appears green. Of course, other features can absorb blue light as well, like the lakes near the northeast corner of the animation that show up as pastel pink. But, depending on your visual preferences and ability to distinguish color, the Blue Light Dust product gives another alternative to the hot pink of the EUMETSAT Dust RGB, the yellow of DEBRA, and the slightly paler tan of the True Color RGB.

One question you might ask is, “How come DEBRA shows a more vivid signal than the other methods?” In the True Color RGB, dust is slightly more pale than the background sand, because it’s made up of (generally) smaller sand particles (which are more easily lofted by the wind) that scatter light more effectively, making it appear lighter in color. In the EUMETSAT Dust RGB, dust appears hot pink because the “split window difference” (12 µm – 10.7 µm) is positive, while the difference in brightness temperatures between 10.7 µm and 8.5 µm is near zero and the background land surface is warm. In DEBRA, the intensity of the yellow is related to the confidence that dust is present in the scene based on a series of spectral tests. DEBRA is confident of the presence of dust even when the signals may be difficult to pick out in the other products, either because it’s a superior product, or because its confidence is misguided. (Hopefully, it’s the former and not the latter.)

By the way, the Takla Makan got its name from the native Uyghurs that live there. Takla Makan means “you can get in, but you can’t get out.” It has also been called the “Sea of Death.” I prefer to call it “China’s Big Bowl of Dust.” It’s a large area of sand dunes (bigger than New Mexico, but smaller than Montana) surrounded on most of its circumference by mountains between 5000 and 7000 m (~15,000-21,000+ feet!). The average annual rainfall is less than 1.5 inches (38 mm). That means when the wind blows it easily picks up the dusty surface, but that dust can’t go anywhere because it’s blocked by mountains (unless it blows to the northeast). The dust is trapped in its bowl.

The Takla Makan is also important historically, because travelers on the original Silk Road had to get around it. Notice on this map, there were two routes: one that skirted the northern edge of the Takla Makan and one that went around the southern edge. This part of Asia was the original meeting point between East and West.

CIRA produces all four imagery products over the Takla Makan desert in near-real time, which you can find here. And, in case you’re curious, you can check out how well DEBRA and the EUMETSAT Dust products compare for the dust-laden siroccos over southern Europe and northern Africa by clicking here and here (for the first event over Spain and Portugal) or here and here (for the second one over Italy and the Adriatic Sea).