Bárðarbunga, the Toxic Tourist Trap

Quick: what was the name of that Icelandic volcano that caused such a stir a few years ago? Oh, that’s right. You don’t remember. No one remembers. (Unless you live outside the U.S. in a place where you might have actually heard someone say the name correctly.) To Americans, it will forever be known as “That Icelandic Volcano” or “The Volcano That Nobody Can Pronounce” – even though it is possible to pronounce the name. Say it with me: Eye-a-Fiat-la-yo-could (Eyjafjallajökull).

Well, back at the end of August 2014 another volcano erupted in Iceland, and there is no excuse for not being able to pronounce this name correctly: Bárðarbunga. (OK, you have one excuse: use of the letter ð is uncommon outside of Iceland. In linguistics, ð is a “voiced dental fricative” which, in English, is a voiced “th”. “The” has a voiced “th”. “Theme” has an un-voiced “th” or, rather,  “voiceless dental non-sibilant fricative“.) Look, you don’t want to offend any Icelanders, so say it right:

“Bowr-thar-Bunga.” See, it’s easy to say. (You may see people who are afraid of the letter ð refer to the recent eruption as Holuhraun [pronounced “Ho-lu-roin”], because Bárðarbunga is part of the Holuhraun lava field. So be aware of that.)

I know what you’re going to ask: “What is so special about this volcano? I haven’t heard anything about it up to this point, so why should I care?” You haven’t heard anything about it because you don’t live in Iceland or in Europe, which is downwind of Iceland. And, why should you care? Let me count the ways in the rest of this blog post.

You probably have heard of Kīlauea (and have no trouble pronouncing that name) and the lava flow that inched its way towards the town of Pahoa. Kīlauea has been continuously erupting since 1983. Bárðarbunga erupted on 29 August 2014 and has been spewing lava ever since, which at this point, is over 100 days of non-stop erupting. It’s Iceland’s version of Kīlauea. (Hopefully, it won’t continue to erupt for another 30 years.)

Just like Kīlauea, Bárðarbunga is attracting tourists from all over the world. It seems every wannabe photographer and videographer has gone (or wants to go) to Iceland to try to come up with the next viral video showing the breathtaking lava flows. Seriously, do a search for Bardarbunga or Holuhraun on YouTube or vimeo and see how many results show up. Here’s a pretty typical example (filmed by someone from Iceland):

Want to join in the fun? Just grab your camera, head to Iceland, hire an airplane or helicopter pilot, and find the most dramatic music you can think of to go along with your footage. Watch out, though – the airspace around the volcano can be rather crowded. As this video shows, it can be hard to film the volcano without other aircraft getting in the way.

If photography is more your thing, here are the latest images of the eruption on Twitter. (Look for the pictures of Beyonce and Jay-Z. If Twitter is correct, they flew over the volcano for his birthday. Viewing the eruption has gone mainstream! You’re too late, hipsters! Good luck getting to the next volcanic eruption before it becomes cool.)

Back to the matter at hand: why you should care about Bárðarbunga. After its first 100 days of erupting, it has created a field of new lava (76 km2) that is larger than the island of Manhattan (59 km2). The volcano has been creating a toxic plume of SO2 for the last 100 days that is making it difficult to breathe. (Here are some of the known health effects of breathing SO2.) SO2 can ultimately be converted into sulfuric acid (acid rain), depending on the chemistry in the air around the volcano. And while it may not be producing as much ash as Eyjafjallajökull did, VIIRS imagery shows it is producing ash, which is a threat to aircraft.

If you follow this blog, you know the best RGB composite for detecting ash is the True Color composite. This is because the visible wavelength channels that make the composite are sensitive to the scattering of light by small particles, like dust, smoke and ash. Iceland is a pretty cloudy place, so it’s not always easy to spot the ash plume, so here it is at its most visible:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 12:57 UTC 11 September 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 12:57 UTC 11 September 2014. The red arrow points to the location of Bárðarbunga.

Click on the image (or any other image) to see the full resolution version. The red arrow shows the location of Bárðarbunga. In case you’re wondering, the borders drawn inside the island are IDL’s knowledge of the boundaries of lakes and glaciers (jökull in Icelandic). The big one just south of the red arrow is Vatnajökull – the largest glacier in Europe and one of three national parks in Iceland. (If you want to go there, be aware of closures due to volcanic activity.)

See the ash plume extending from the red arrow to the east-northeast out over the Atlantic Ocean? Now, try to find the ash plume in this animation of True Color images from 29 August to 14 October 2014:

Animation of VIIRS True Color images of Iceland 29 August - 14 October 2014

Animation of VIIRS True Color images of Iceland 29 August – 14 October 2014

As with most of my animations, I have selectively removed images where it was too cloudy to see anything. Sometimes, the steam from the volcano mixes with the ash to make its own clouds, much like a pyrocumulus. Watch for the ash to get blown to the northwest and then southwest in early October. In case you can’t see it, here’s a static example:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 12:15 UTC 10 October 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 12:15 UTC 10 October 2014. The red arrow shows the location of Reykjavik.

This time, the red arrow shows Reykjavik, the nation’s capitol and likely only city in Iceland you’ve heard of. The ash plume is pretty much right over Reykjavik!

Over the course of the first 100 days, no place in Iceland has been kept safe from the ash plume. But, that’s not the only threat from Bárðarbunga: I also mentioned SO2. If you recall from our look at Copahue (Co-pa-hway – say it right!) the EUMETSAT Dust algorithm is sensitive to SO2. So, can we detect the toxic sulfur dioxide plume from Bárðarbunga? Of course! But, it does depend on cloudiness and just how much (and how high) SO2 is being pumped into the atmosphere.

If you read my post on Copahue, you should have no trouble picking out the sulfur dioxide plume in this image of Bárðarbunga:

EUMETSAT Dust RGB composite applied to VIIRS, 12:57 UTC 11 September 2014

EUMETSAT Dust RGB composite applied to VIIRS, 12:57 UTC 11 September 2014

This image is from the same time as the first True Color image above, when the plume was very easy to see. Also note the large quantity of contrails (aka “chemtrails” to the easily misled). Those are the linear black streaks west of Iceland. If you’re confident in your ability to see the sulfur dioxide, see how often you can pick it out in this animation:

Animation of EUMETSAT Dust RGB images from VIIRS (29 August - 10 October 2014)

Animation of EUMETSAT Dust RGB images from VIIRS (29 August – 10 October 2014)

Some detail is lost because an RGB composite may contain as many as 16 million colors, while the .gif image standard only allows 256. But, you can still see the pastel-colored SO2 plume, which almost looks greenish under certain conditions due to interactions with clouds. Also note the volcano itself appears cyan – the hottest part of the image has a cool color! Unusual in a composite that makes almost everything appear red or pink.

If you want to see the volcano look more like a hot spot, here are animations of the shortwave IR (M-13, 4.0 µm) and the Fire Temperature RGB composite (which I promote whenever I can). I should preface these animations by saying I have not removed excessively cloudy images but, at least 80% of the days have two VIIRS afternoon overpasses and, to reduce filesizes, I have kept only one image per day:

Animation of VIIRS M-13 images of Iceland (29 August - 15 October 2014)

Animation of VIIRS M-13 images of Iceland (29 August – 15 October 2014)

The Fire Temperature RGB is made up of M-10 (1.6 µm; blue), M-11 (2.25 µm; green) and M-12 (3.7 µm; red):

Animation of VIIRS Fire Temperature RGB images of Iceland (29 August - 15 October 2014)

Animation of VIIRS Fire Temperature RGB images of Iceland (29 August – 15 October 2014)

No surprise, molten rock is quite hot! That area of lava has saturated my color table for M-13 and it saturated the Fire Temperature RGB. As I’ve said before, only the hottest fires show up white in the Fire Temperature RGB and lava is among the hottest things you’ll see with VIIRS. Sometimes, you can see the heat from the volcano through clouds (and certainly through the ash plume)! It’s also neat to watch the river of lava extend out to the northeast and then cool.

To quantify it a bit more, the first day VIIRS was able to see the hot spot of Bárðarbunga (31 August 2014), the M-13 brightness temperature was the highest I’ve seen yet: 631.99 K. The other midwave-IR channels (M-12 and I-4; 3.7 and 3.74 µm, respectively) saturate at 368 K. The Little Bear Fire (2012) peaked at 588 K and that fire was hot enough to show up in M-10 (1.6 µm) during the day, so it’s no wonder that we’ve saturated the Fire Temperature RGB.

There’s one more interesting way to look at Bárðarbunga using a new RGB composite. When I was first tipped to this event, I saw this image from NASA, which you can read more about here. That image was taken by the Operational Land Imager (OLI) from Landsat-8 and is a combination of “green, near-infrared and shortwave infrared” channels. Applying this to VIIRS, that combination becomes M-4 (0.55 µm), M-7 (0.87 µm) and M-11 (2.25 µm), which is similar to the Natural Color composite (M-5, 0.64 µm; M-7, 0.87 µm; M-10, 1.61 µm) except for a few notable differences. M-4 is more sensitive to smoke and ash and vegetation than M-5. And M-11 is more sensitive to fires and other hotspots than M-10.

The differences are subtle, but you can see them in this direct comparison:

Comparison between VIIRS "Natural Color" and "False Color with Shortwave IR" RGB composites (12:38 UTC 14 October 2014)

Comparison between VIIRS “Natural Color” and “False Color with Shortwave IR” RGB composites (12:38 UTC 14 October 2014)

NASA calls this RGB composite “False Color with Shortwave Infrared,” although I’m sure there has to be a better name. Any suggestions?

Most of my images and loops have come from the first 45 days after eruption. This was a very active period for the volcano, and is where most of the previously mentioned videos came from. (And trust me, you and your browser couldn’t handle the massive animations that would have resulted from using all 100+ days of images.) To prove Bárðarbunga has gone on beyond that, here’s one of the new RGB composites from 17 November 2014:

VIIRS false color RGB composite of channels M-4, M-7 and M-11, taken 13:42 UTC 17 November 2014

VIIRS false color RGB composite of channels M-4, M-7 and M-11, taken 13:42 UTC 17 November 2014

This image really makes Iceland look like a land of fire and ice, which is exactly what it is!

B-31 and the Pine Island Glacier

Nope. This post is not about a warplane, an alcoholic beverage or a “New Wave” band from the 1970s. (Those are all B-52s.) And I’m not talking about a county road in Michigan or a New York City bus line. B-31 is the rather bland name given to the massive iceberg that just broke off from the Pine Island Glacier in Antarctica. (Of course, if you tried to name every chunk of ice floating around Antarctica, how long would it take you to run out of names and just switch to random letters and numbers?)

This particular chunk of ice is special, however, as it has been described as the size of a city. Now, as a scientist, I have to say that the size of a city is a terrible unit of measurement. How big a city are we talking about? I suspect people who live in one of the ten largest cities in the world would laugh at what the people of Wyoming call a “city”. And are we talking the size of the greater metropolitan area or just what is within the city limits?

The article that describes B-31 as the size of city mentioned that it was roughly the size of Singapore, or twice the size of Atlanta. Those seem like odd choices for comparison. How many of you have a good idea of what the land area is of Singapore? And twice the size of Atlanta? They could have used New York City, which has just over twice the land area of Atlanta and people are probably more familiar with New York City. In any case, all of these size estimates have errors.

The original estimate came from this NASA MODIS image and associated caption, which put the size of B-31 as 35 km x 20 km. Now, that’s 700 km2 assuming the iceberg is a perfect rectangle, which you can see in the image that it isn’t. Singapore has a land area of 714 km2, while New York City is 768 km2 and Atlanta is 341 km2 (these are “within the city limits” numbers, not the size of the greater metropolitan area). Since the iceberg is actually smaller than the 35 km x 20 km rectangle based on the widest and longest dimensions of the iceberg, maybe “twice the size of Atlanta” is the most accurate estimate.

Anyway, MODIS is not the only satellite instrument out there capable of viewing B-31. Landsat-8 saw it in much higher resolution in another post from NASA. And, of course this entire blog is about what VIIRS can see. Now, VIIRS doesn’t have the resolution of Landsat or the highest-resolution channels on MODIS, but VIIRS has the Day/Night Band, allowing us to see the iceberg both day and night (at visible wavelengths).

To show why that is important, take a look at the infrared image (M-15, 10.7 µm) below. Images in the “infrared window” (the N-band window, according to this site) used to be the only way to detect surface features and clouds at night. At these wavelengths, the amount of radiation detected by the satellite is a function of the temperature of the objects the instrument is looking at. As always, to see the high resolution version of the image, click on it, then on the “1660×1706” link below the banner.

VIIRS IR image (M-15) taken 23:34 UTC 7 November 2013

VIIRS IR image (M-15) taken 23:34 UTC 7 November 2013

See that slightly darker gray area near the center of the image? That’s open water in Pine Island Bay, which is only slightly warmer than the ice and low clouds surrounding it. Otherwise, there isn’t much detail in this picture. What really stands out are the cold, high clouds that are highlighted by the color scale. Contrast this with a visible wavelength image from the same time (M-5, 0.67 µm):

VIIRS visible (M-5) image, taken 23:34 UTC 7 November 2013

VIIRS visible (M-5) image, taken 23:34 UTC 7 November 2013

The open water in Pine Island Bay shows up clear as day because, well, it is daytime and the ice and snow reflect a lot more sunlight back to the satellite than the open water does. Icebergs can easily be distinguished from the low clouds now. You can even see through some of the low clouds to identify individual icebergs that are not visible in the infrared image. The difference in reflectivity between the ice and water at visible wavelengths is a lot greater than the difference in brightness temperature in the 10-12 µm infrared wavelengths, and that contrast is what makes things more easily visible.

Now, it is summer down there and at these latitudes, the sun is up for most of the day (actually, all day for everywhere in this scene on the Summer Solstice, which occurred on 21 December 2013), so you could say that using the VIIRS Day/Night Band to look at this stuff is unnecessary. But, since VIIRS is on a polar-orbiting satellite, it views the poles a lot more frequently than where you or I live: every 101 minutes on average, instead of every 12 hours in the low and mid-latitudes. That means it may occasionally capture a nighttime image here or there during the short nights and will frequently capture images where the day/night terminator crosses through the scene and we still want to be able to see what’s going on then. And you need the Day/Night Band to do that.

For the first time on this blog, however, we’re not going to show the Day/Night Band data exactly. We’re going to show the Near Constant Contrast imagery product, which is produced from the Day/Night Band. You can read up more on the Near Constant Contrast product and how it’s related to the Day/Night Band here. At this point, we’ll refer to NCC and DNB rather than having to type out Near Constant Contrast and Day/Night Band all the time.

Here’s a NCC image from 7 November 2013 at 20:15 UTC where the Pine Island Glacier has been identified. B-31 is still attached to the glacier – it’s sticking out into the bay and, if you look at the high resolution version of the image, you may be able to see the crack where it has started to calve.

VIIRS Near Constant Contrast image from 20:15 UTC 7 November 2013

VIIRS Near Constant Contrast image from 20:15 UTC 7 November 2013. The Pine Island Glacier is identified.

Keep your eye on that spot as you watch this zoomed-in animation of NCC images starting from the above image to 03:06 UTC 18 November:

Animation of VIIRS NCC images of the Pine Island Glacier from 7-18 November 2013

Animation of VIIRS NCC images of the Pine Island Glacier from 7-18 November 2013

I should say that the above animation does not include images from every orbit. I’ve subjectively removed images that were too cloudy to see anything as well as images where the VIIRS swath didn’t cover enough of the scene. This left 25 images over the 11 day period. Even so, VIIRS captured the moment of B-31 breaking free quite well.

Imagine the sound that this 600+ km2 chunk of ice made as it broke free. I bet it sounded something like this glacier calving event in Greenland:


One of the articles linked to above mentioned the importance of tracking such a large iceberg, because it could impact ships in the area. (Just this week a ship got stranded in ice off the coast of Antarctica.) So, I decided to see if VIIRS could track it. The results are in the MP4 video clip linked to below. You may need an appropriate browser plug-in or add-on (or whatever your browser calls it) to be able to view the video.

Animation of VIIRS NCC images from 7 November – 26 December 2013 (.mp4 file)

That’s 50 days of relatively cloud-free VIIRS NCC images (7 November – 26 December 2013), compressed down to 29 seconds. Go ahead, watch the video more than once. Each viewing uncovers additional details. Notice how B-31 doesn’t move much after 10 December. Notice how ice blocks the entrance to Pine Island Bay at the beginning of the loop, then clears out by the end of the loop. Notice all the icebergs near the shore that are pushed or pulled or blown out to sea from about 20 December through the end of the loop. Notice that B-31 isn’t even the biggest chunk of ice out there. Notice the large ice sheet on the west side of Pine Island Bay that breaks up right at the end of the loop. In fact, here’s another zoomed-in animated GIF to make sure you notice it:

Animation of VIIRS NCC images from 20-26 December 2013

Animation of VIIRS NCC images from 20-26 December 2013

That area of ice is much larger than B-31! (Dare I say, as large as the state of Rhode Island? Probably not, because then you’ll just think of how Rhode Island is the smallest US state, so it can’t be very impressive. It’s also not very accurate since that estimate is based on eye-balling it and thinking it looks like it could be four times the size of B-31.)

Of course, we are heading towards the middle of summer in the Antarctic when the ice typically reaches its minimum extent. So the ice breaking up isn’t unusual. Plus, large calving events occur on the Pine Island Glacier every few years. But, the B-31 event is noteworthy because Pine Island Glacier holds about 5% of the total freshwater contained on Antarctica.  It’s also the site of an ongoing field experiment where researchers are investigating glacier-ocean interactions. You can read up on what it’s like to install instruments on a glacier while living in a tent on the coldest continent 1000 miles from any other human settlement in this article. (That article doesn’t say if any instruments are still stuck in B-31 and floating out to sea, though.) And, if you’re curious, Pine Island Glacier has its own Twitter account. So far, the conclusions are that Pine Island Glacier is thinning, receding and speeding up. Large calving events are just one piece of the puzzle, but an important piece to understand since they contribute to sea level rise.

The calving process of B-31 was first noticed by NASA researchers noticing a crack forming in Pine Island Glacier while flying over the area in October 2011 – before VIIRS was even launched. But, VIIRS was there to capture the end result of that crack two years later!


UPDATE (22 April 2014): B-31 has continued to drift towards the open ocean. Researchers at NASA have been monitoring the movement of the massive iceberg since it first calved, and have put together their own video here, which tracks B-31 from the time of my video above into mid-March 2014.