Hell Froze Over (and the Great Lakes, too)

This has been some kind of winter. The media has focused a lot of attention on the super-scary “Polar Vortex” even though it isn’t that scary or that rare. (I wonder if Hollywood will make it the subject of the next big horror movie in time for Halloween.) Many parts of Alaska have been warmer than Georgia, with Lake Clark National Park tying the all-time Alaskan record high temperature for January (62 °F) on 27 January 2014. (Atlanta’s high on that date was only 58 °F.) Sacramento, California broke their all-time January record high temperature, reaching 79 °F three days earlier. In fact, many parts of California had record warmth in January, while everyone on the East Coast was much colder than average. Reading this article made me think of an old joke about statisticians: a statistician is someone who would say: if your feet are stuck in a freezer and your head is stuck in the oven, you are, on average, quite comfortable.

One consequence of the cold air in the eastern United States is that Hell froze over. No, not the Gates of Hell in Turkmenistan. This time I’m talking about Hell, Michigan. Hell is a nice, little town whose residents never get tired of people telling that joke.

It has been so cold in the region around Hell that the Great Lakes are approaching a record for highest percentage of surface area covered by ice. This article mentions some of the benefits of having ice-covered Lakes, including: less lake-effect snow, more sunshine and less evaporation from the Lakes, which would keep lake levels from dropping. Although, that is at the cost of getting ships stuck in the ice, and reducing the temperature-moderating effects of the Lakes, which allows for colder temperatures on their leeward side.

This article (and many other articles I found) uses MODIS “True Color” images to highlight the extent of the ice. Why don’t they show any VIIRS images? Well, I’m here to rectify that.

First off, I can copy all those MODIS images and show the “True Color” RGB composite from VIIRS:

VIIRS "True Color" RGB composite of channels M-3, M-4 and M-5, taken 17:27 UTC 11 February 2014

VIIRS "True Color" RGB composite of channels M-3, M-4 and M-5, taken 17:27 UTC 11 February 2014

While it was a rare, sunny winter day for most of the Great Lakes region on 11 February 2014, it’s hard to tell that from the True Color imagery. I mean, look at this True Color MODIS image shown on NPR’s website. Can you tell what is ice and what is clouds?

There are ways of distinguishing ice from clouds, which I have talked about before but, it doesn’t hurt to look at these methods again and see how well they do here. First, let’s look at my modification of the EUMETSAT “Snow” RGB composite:

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 17:27 UTC 11 February 2014

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 17:27 UTC 11 February 2014

This “Snow” RGB composite differs by using reflectances at 2.25 µm in the place of the 3.9 µm channel that EUMETSAT uses. (Their satellite doesn’t have a 2.25 µm channel.) It’s easy to see where the clouds are now. Of course, now the snow and ice appear hot pink, which you may not find aesthetically pleasing. And it certainly isn’t reminiscent of snow and ice.

If you don’t like the “Snow” RGB, you may like the “Natural Color” RGB composite:

VIIRS "Natural Color" RGB composite of channels I-01, I-02 and I-03, taken 17:27 UTC 11 February 2014

VIIRS "Natural Color" RGB composite of channels I-01, I-02 and I-03, taken 17:27 UTC 11 February 2014

This has the benefit of making snow appear a cool cyan color, and has the added benefit that you can use the high-resolution imagery bands (I-01, I-02 and I-03) to create it. There is twice the resolution in this image than in the Snow and True Color RGB images. Here’s another benefit you may not have noticed right away: the clouds, while still white, appear to be slightly more transparent in the Natural Color RGB. This makes it a bit easier to see the edge of the ice on the east side of Lake Michigan and the center of Lake Huron, for example.

If you’re curious as to how much ice is covering the lakes, here are the numbers put out by the Great Lakes Environmental Research Laboratory (which is about a 25 minute drive from Hell) from an article dated 13 February 2014:

Lake Erie: 96%; Lake Huron: 95%; Lake Michigan: 80%; Lake Ontario: 32% and Lake Superior: 95%. This gives an overall average of 88%, up from 80% the week before. The record is 95% set in 1979, although it should be said satellite measurements of ice on the Great Lakes only date back to 1973.

Why does Lake Ontario have such a low percentage? That last article states, “Lake Ontario has a smaller surface area compared to its depth, so it loses heat more slowly. It’s like putting coffee in a tall, narrow mug instead of a short, wide one. The taller cup keeps the coffee warmer.”  Doesn’t heat escape from the sides of a mug as well as the top? And isn’t Lake Superior deeper than Lake Ontario? Another theory is that “Lake Ontario’s depth and the churning caused by Niagara Falls means that it needs long stretches of exceptionally cold weather to freeze.”  Does Niagara Falls really have that much of an impact on the whole lake?

So, what is the correct explanation? I’m sorry, VIIRS can’t answer that. It can only answer “How Much?” It can’t answer “Why?”

 

BONUS UPDATE (17 February 2014):

It has come to my attention that the very next orbit provided better images of the Great Lakes, since they were no longer right at the edge of the swath. Here, then, are the True Color, Snow and Natural Color RGB composite images from 19:07 UTC, 11 February 2014:

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 19:07 UTC 11 February 2014

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 19:07 UTC 11 February 2014

 

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 19:07 UTC 11 February 2014

VIIRS "Snow" RGB composite of channels M-11, M-10 and M-7, taken 19:07 UTC 11 February 2014

 

VIIRS "Natural Color" composite of channels I-01, I-02, and I-03, taken 19:07 UTC 11 February 2014

VIIRS "Natural Color" composite of channels I-01, I-02, and I-03, taken 19:07 UTC 11 February 2014

 

UPDATE #2 (18 March 2014): The Great Lakes ice cover peaked at 92.2% on 6 March 2014, just short of the all-time record in the satellite era. March 6th also happened to be a clear day over the Great Lakes, and VIIRS captured these images:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 18:35 UTC 6 March 2014

VIIRS True Color RGB composite of channels M-3, M-4 and M-5, taken 18:35 UTC 6 March 2014

 

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 18:35 UTC 6 March 2014

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10, taken 18:35 UTC 6 March 2014

Record Russian Rain Runoff Responsible for Rapid River Rise

Sorry, I couldn’t help myself with that title.  Last time we looked at flooding in Russia, it was in the western parts – generally near Moscow and primarily along the Oka River – and caused by rapid melting of record spring snowfall. This time, flooding is occurring in Russia’s Far East, primarily along the Amur River, caused by heavy rainfall related to monsoon wind patterns in the region – record levels of flooding not seen before in the 160 years Russians have settled in the area.

Unfortunately, this natural disaster is affecting more than just Russia. In China, many people are dead or missing as the result of flooding. (The figure of “hundreds dead or missing” includes flooding caused by typhoons Utor and Trami in southeastern China, flash flooding in western China, and the subject of today’s post: river flooding in northeastern China and far east Russia.) The Chinese provinces of Liaoning, Jilin and Heilongjiang have been hit particularly hard with persistent, heavy rains since late July, as have areas just across the border in Amur Oblast, Khabarovsk Krai and the Jewish Autonomous Oblast in Russia.

A few more facts: Heilongjiang is the Chinese name for the Amur River. It translates to English as “Black Dragon”. The Mongols called it Kharamuren (“Black Water”), which, I assume, the early Russian settlers shortened to Amur. It is the longest undammed river in the Eastern Hemisphere and the home to the endangered Amur leopard and Amur tiger. Since 1850, the Amur River has been the longest piece of the border between China and Russia. Now, in 2013, the Amur River has reached the highest levels ever recorded.

Backing up a bit, here’s what the area looked like according to “Natural Color” or “pseudo-true color” VIIRS imagery back in the middle of July:

VIIRS false-color RGB composite of channels I-01, I-02 and I-03, taken 03:27 UTC 14 July 2013

VIIRS false-color RGB composite of channels I-01, I-02 and I-03, taken 03:27 UTC 14 July 2013

As always, click on the image, then on the “2368×1536” link below the banner to see the full resolution version. Here’s what the same area looked like about a month later:

VIIRS false color RGB composite of channels I-01, I-02 and I-03, taken 03:14 UTC 21 August 2013

VIIRS false color RGB composite of channels I-01, I-02 and I-03, taken 03:14 UTC 21 August 2013

Notice anything different? The Amur River has overflowed its floodplain and is over 10 km (6 miles) wide in some places. Just downriver (northeast) from Khabarovsk, the flooded area is up to 30 km (18 miles) wide!

Pay attention to Khabarovsk. Back in 1897, the Amur River crested there with a stage of 6.42 m (about 21 feet in American units), which was the previous high water mark. On 22 August 2013, the river stage reached 7.05 m (23 feet) and was expected to keep rising to 7.8 m (25.6 feet) by the end of August. The map below (in Russian) shows the local river levels on 22 August 2013. It came from this website.

Amur River levels at various locations in Khabarovsk Krai, Russia on 22 August 2013.

Amur River levels at various locations in Khabarovsk Krai, Russia on 22 August 2013.

Note that Khabarovsk in Cyrillic is Хабаровск (the black dot in the lower left), and Amur is Амур. The blue numbers represent the river stage in cm. Red numbers indicate the change in water level (in cm) over the last 24 hours. The colored dots indicate how high the river level is above flood stage according to the color scale (also in cm). The river at Khabarovsk is more than 4 meters (13 feet) above flood stage.

Not impressed by comparing a “before” and “after” image? Here’s an animation over that time period (14 July to 21 August 2013), with images from really cloudy days removed:

Animation of VIIRS false-color composites of channels I-01, I-02 and I-03

Animation of VIIRS false-color composites of channels I-01, I-02 and I-03. Click on the image, then on the "1184x768" link below the banner to view the animation.

You have to click through to the full resolution version before the loop will play. In order to not make the world’s largest animated GIF, the I-band images in the loop have been reduced in resolution by a factor of 2, making them the same resolution as if I had used M-5, M-7 and M-10 to make this “Natural Color” composite.

The Day/Night Band is not known for its ability to detect flooding at night, but it also saw how large the Amur River has become:

VIIRS Day/Night Band image, taken 17:27 UTC 20 August 2013

This image was taken on 20 August 2013, which just so happens to be the night of a full moon. The swollen rivers are clearly visible thanks to the moonlight (and general lack of clouds).

Khabarovsk is a city of over 500,000 people and would require a major evacuation effort if the river reached the expected 7.8 m level. Over 20,000 people have already been evacuated in Russia alone (and over a million people in China) according to this report. Oh, and at least two bears.

This heavy rain and flooding makes it all the more surprising that, a little further north and west in Russia, there have been numerous, massive wildfires. Check out this “True Color” image from VIIRS, taken on 16 August 2013:

VIIRS"True Color" composite of channels M-3, M-4 and M-5, taken 03:12 UTC 16 August 2013.

VIIRS"True Color" composite of channels M-3, M-4 and M-5, taken 03:12 UTC 16 August 2013.

See the supersized swirling Siberian smoke spreading… OK, I’ll quit with the alliteration. Here’s the smoke plume on the very next overpass (about 90 minutes later) seen on a larger scale:

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 04:52 UTC 16 August 2013.

VIIRS "True Color" composite of channels M-3, M-4 and M-5, taken 04:52 UTC 16 August 2013.

A strong ridge of high pressure with its clockwise flow is trapping the smoke over the region. In this image you can see quite a few of the smoke sources where the fires are still actively burning. Look in the latitude/longitude box bounded by 98 °E to 105 °E and 59 °N to 61 °N. By the way, that’s Lake Baikal on the bottom of the image, just left of center.

A quick back-of-the-envelope calculation indicates that the area covered by smoke is roughly 500,000 km2. (Of course it is complicated by the fact that the smoke is mixing in with the clouds, so it is hard to define a true boundary for the smoke on the north and west sides.) That puts it in the size range of Turkmenistan, Spain and Thailand. If that’s not a good reference for you, how’s this? The smoke covers an area larger than California and smaller than Texas.

These fires have burned for more than a month. This article from NASA includes a MODIS image from 25 July 2013 containing massive smoke plumes and shows that areas of central Russia (particularly north of the Arctic Circle) have had a record heatwave this summer. And here are a few more images of the smoke from MODIS over the past few weeks.

Heatwaves and fires and floods? Russia is all over the map. Literally. I mean, look at a map of Asia – Russia is all over that place. It even spreads into Europe!

Record Russian Spring Snowmelt

It seems that last year’s posts were all about fires. Fires in Colorado (multiple fires, in fact), the Canary Islands, Siberia, Australia – there was even that 40-year-old pit of burning natural gas that has been called the “Gates of Hell“. (It’s still burning, by the way.) Maybe this year’s theme will be all about flooding. We just looked at flooding in the U.S. Midwest. And now, we return back to Russia – the western part this time – where massive flooding has occurred this spring.

Moscow had 65 cm of snow on the ground on 1 April 2013. (That’s roughly 26 inches for any American readers.) That’s the most snow they’ve ever had on the ground that late in the spring, and it was all thanks to record snowfall during the month of March. This article from 26 March 2013 says they got 70 cm (28 inches) in a two day period, and forecasters were predicting another 8-10 cm by the end of the month.

What happens when record amounts of snow melt? It causes flooding. In this case, flooding that makes the Illinois River look like a creek you can hop across. The watershed of the Volga River has been hit especially hard. Here’s a picture that our resident Russian, Galina C., tells me is from near the city of Ryazan, so I assume it is the Oka River. (Refer back to the Volga River map I linked to.) There are more pictures here.

To bring this all together with VIIRS, here is what VIIRS saw on 28 March 2012, right after the region got 70 cm of snow:

False color RGB composite of VIIRS channels I-01, I-02 and I-03, taken 10:38 UTC 28 March 2013

False color RGB composite of VIIRS channels I-01, I-02 and I-03, taken 10:38 UTC 28 March 2013

Again, to see the full resolution image, click on it and then click on the “1793×2036 ” link below the banner. This is the false color combination that EUMETSAT refers to as “Natural Color“, where snow and ice appear cyan and liquid clouds appear white. The whole scene is snow, except for a few small clouds north of Moscow and anywhere there are trees sticking out above the snow, which appear green.

Notice that you can’t see any rivers. They’re all frozen over and covered with snow.

Here’s what VIIRS saw (same false color combination) a month later (29 April 2013):

False color composite of VIIRS channels I-01, I-02 and I-03, taken 10:39 UTC 29 April 2013

False color composite of VIIRS channels I-01, I-02 and I-03, taken 10:39 UTC 29 April 2013

All the snow is gone. Plus, look at all the rivers you can see. The problem is that you shouldn’t normally be able to see all of these rivers. The flooding makes them visible.

What I think is more impressive is seeing a time-lapse loop of VIIRS images over this period:

Animation of false color composites of VIIRS channels I-01, I-02 and I-03 from 28 March 2013 to 2 May 2013.

Animation of false color composites of VIIRS channels I-01, I-02 and I-03 from 28 March 2013 to 2 May 2013.

Make sure you look at it in full resolution mode. Note that the time period between frames in the animation varies. Some days it was too cloudy to see anything, one or two days had missing data, etc., so this isn’t always one image per day.

The city of Ryazan is identified in the animation (remember the photo linked to earlier). To put it into perspective, check out the Google Maps satellite view of the city. The Oka River is normally ~200 m wide near the city. In the last two frames of the animation, the Oka River is over 10 km wide at its widest point near Ryazan! The same goes for a lot of the rivers visible at the end of the loop – rivers that are normally a few tens or hundreds of meters wide are up to a few kilometers wide.

The city of Tambov at 52°43′N, 41°26′E, which is outside of the domain of the animation, but in the southeastern portion of the larger static images, experienced its worst flooding in 130 years in early April. (That corner of the domain was the first to experience snowmelt.) One of the contributing factors at Tambov, according to that article, was that the ground below the snow was still frozen. The snowmelt occurred before the ground thawed. This meant that the meltwater couldn’t be absorbed into the ground – it simply collected in the low-lying areas or ran off into the rivers, which quickly filled as you can see.

Our resident Russian was also able to grab this plot of the Oka River stage at Novinky, just upstream of where the Oka empties into the Volga. The information comes from this website. This plot covers the time period from 7 April to 7 May 2013.

River stage of the Oka River at Novinky, Russia for April 2013

River stage of the Oka River at Novinky, Russia for April 2013. Data comes from gis.waterinfo.ru, with help from Galina Chirokova (CIRA).

The Oka River looks like it peaked at about 2.5 m above normal. (8 ft. for you Americans.)

All that water is going to end up in the Caspian Sea, whose water level is largely based on inflow from the Volga River’s watershed. Variations of sea level in the Caspian have been +/-3 m over the last century and, with this influx of snowmelt, it is sure to go up.

Land of Lincoln Underwater

The week beginning on 14 April 2013 was a big week for weather across the United States. There were 30 reports of tornadoes. (Make sure you click on each link, and look at the filtered reports.) And, when our home base of Fort Collins, Colorado was in the middle of being buried under two feet of snow, large parts of the Midwest received 4-7 inches of rainfall. This is a lot of rain for an area with saturated ground caused by recent snowmelt. Unsurprisingly, it caused a lot of flooding – including a sinkhole in a Chicago neighborhood.

Now, we know VIIRS is good at detecting snow. But, flooding is a bit trickier, particularly river flooding. First, flooding usually occurs when it’s cloudy. (Not always, of course, since you can have flooding from snowmelt or heavy rains that occurred upstream or caused by ice jams when it isn’t cloudy. And, as we saw with Hurricane Isaac, flooding may linger long after the clouds are gone.) Second, flooding can have a huge impact over a small area that your satellite might not have the resolution to detect.

Well, I’m here to report that VIIRS has the resolution to detect the flooding that occurred over Illinois last week. And the flooding lasted until well after the clouds cleared. Take a look at the image below from 21 April 2013, where the flooding is visible:

VIIRS false color composite of channels I-01, I-02 and I-03, taken 18:13 UTC 21 April 2013

VIIRS false color composite of channels I-01, I-02 and I-03, taken 18:13 UTC 21 April 2013

This is a “Natural Color” RGB composite of the high-resolution channels I-01 (0.64 µm, blue), I-02 (0.87 µm, green) and I-03 (1.61 µm, red). If you click on the image, then on the “3124×2152” link below the banner, you will see the full resolution image. If you’re wondering where the flooding is, notice the rivers I have labelled in the image. Now try to spot those rivers in this image from two weeks earlier (5 April 2013):

VIIRS false color composite of channels I-01, I-02 and I-03, taken 18:13 UTC 5 April 2013.

VIIRS false color composite of channels I-01, I-02 and I-03, taken 18:13 UTC 5 April 2013.

Those rivers are a lot more difficult to see. The Illinois, Sangamon, and Mississippi rivers are the only rivers easily visible in the before image. A lot more show up after the heavy rains because they grew beyond their banks and became big enough for VIIRS to see. You might also notice that the vegetation has become much greener over this two week period. To make it easier to compare, here are those images cropped and centered on the swollen rivers, side-by-side:

False-color RGB composites of VIIRS channels I-01, I-02 and I-03, taken on 5 April 2013 and 21 April 2013

False-color RGB composites of VIIRS channels I-01, I-02 and I-03, taken on 5 April 2013 (left) and 21 April 2013 (right)

There are a couple of important things to note about these images that are related to how VIIRS and its satellite (Suomi-NPP) work. One is that Suomi-NPP has an orbit with a 16-day repeat cycle. Every 16 days it should (if it’s in its proper orbit) pass over the same spot on the Earth at the same time of day. The images above were taken 16 days apart, and as you can see in the captions, were taken at the same time of day. The only difference in the area included in the images is the result of the start time of the data granules being 13 seconds off. This means that VIIRS is viewing all the same spots at the same viewing angles.

This leads to point #2: the VIIRS instrument has a constant angular resolution (recall that it uses a constantly rotating mirror to detect radiation across the swath) which, when projected onto the surface of the Earth, means that it does not have a constant spatial resolution. (See slide 12 of this presentation.) The spatial resolution of the high resolution channels shown here is ~375 m at nadir, and it degrades to ~750 m resolution at the edge of the swath. In the images above, the center of the VIIRS swath (nadir) is near the right edge of the data plotted. The left edge of the data plotted is about 80% of the distance from nadir to the edge of the swath. The loss in resolution over this distance may be enough to prevent VIIRS from detecting all the flooding that is occurring. But, the important thing is that we are viewing all these rivers at the same angles and the same resolution. This gives the best comparison between the before and after images.

A few more things to notice in the above images: there is snow in the northern part of Michigan’s Lower Peninsula, with ice on Green Bay and Lake Winnebago (all of which are easier to see in the image from 5 April 2013). Does anyone living there still remember last year’s record heat wave?  Many places in this region had already had a number of +80 and +90 °F days, but it seems like a distant memory now. This year, winter doesn’t want to end.

One last thing for today: If you focus on Michigan again you might notice another area of flooding. This one is large enough it wouldn’t be impacted by any resolution degradation (even though it is near the center of the swath where you wouldn’t be worried about that anyway). I’ve zoomed in on the area here:

False-color composites of VIIRS channels I-01, I-02 and I-03 from 5 April 2013 and 21 April 2013

False-color composites of VIIRS channels I-01, I-02 and I-03 from 5 April 2013 (left) and 21 April 2013 (right)

This is along the Shiawassee River near the Shiawassee National Wildlife Refuge, a few miles southwest of Saginaw. This area of flooding is confirmed by these aerial photographs taken on 22 April 2013.

Pumice Rafts: The Floating Rocks of the Sea

Do rocks float? The answer to that is “Depends on which rocks you’re talking about.”

We just looked at what happens in the atmosphere when a volcano like Copahue erupts. We also looked at the impact the 1912 eruption of Novarupta still has today. And, before VIIRS was launched into space, there was Eyjafjallajökull – the Icelandic volcano that nobody could pronounce. (Think “Eye-a-Fiat-la-yo-could” [click here to hear audio of some guy saying it properly].) These are examples of what geologists would refer to as an “explosive eruption”. Not all volcanoes blow ash into the atmosphere. Think of Kilauea in Hawaii – this is an example of an “effusive eruption” where lava oozes or bubbles up out of the ground in a rather non-violent manner. These are the most common volcanic eruptions on land that everyone should already be familiar with.

But, what happens when the volcano is underwater? You get what a group of New Zealand geologists are calling “Tangaroan” (named after the Maori god of the sea, Tangaroa). This article explains it in more detail, but the short version is this: at the bottom of the ocean, there is immense pressure from the weight of the water above the volcano that prevents an eruption from being truly “explosive”, yet the eruptions are often more violent than an effusive eruption. The magma, filled with gas, erupts into the ocean where the outer edges are instantly cooled and solidified. (The water is cold at the bottom of the ocean.) This traps all the gas inside and you get a rock that’s filled with millions of tiny air bubbles, which is called pumice. This new rock can be so light, it floats to the surface.

What does this have to do with VIIRS or a blog about imagery from weather satellites? Large underwater volcanic eruptions can create large quantities of pumice that float to the surface of the ocean and create what are called pumice rafts. VIIRS has seen these pumice rafts.

Here is a “natural color” or “pseudo-true color” RGB composite of VIIRS channels I-01 (0.64 µm, blue), I-02 (0.865 µm, green) and I-03 (1.61 µm, red), taken at 01:40 UTC 27 August 2012. Notice anything unusual in the water?

False color RGB composite of VIIRS channels I-01, I-02 and I-03, taken 01:40 UTC 27 August 2012

False color RGB composite of VIIRS channels I-01, I-02 and I-03, taken 01:40 UTC 27 August 2012

As always, click on the image, then on the “2798×2840” link below the banner to see the full resolution image. All those pale blue-gray swirls in the ocean surrounding Raoul Island and Macauley Island are the pumice rafts. They almost look like someone sprayed “Silly String” in the ocean.

To get a sense of the scale of these rafts, the latitude lines plotted on the image are ~111 km apart. Some of these rafts are 1-2 km wide in places. In this image you can see pumice rafts stretching from about 27.5 °S to 31.5 °S latitude and from about 175 °W to 178 °E longitude. That is a lot of floating rocks!

Here is a zoomed version of the previous image:

False color RGB composite of VIIRS channels I-01, I-02 and I-03, taken 01:40 UTC 27 August 2012

False color RGB composite of VIIRS channels I-01, I-02 and I-03, taken 01:40 UTC 27 August 2012

The main concentration of floating pumice is in the box the covers the area from 29 °S to 30 °S latitude and from about 176 °W to 178 °E longitude, although there is plenty of pumice south of that box – it’s just a little harder to see.

As an aside, Raoul and Macauley islands are part of the Kermadec Islands of New Zealand. If you’re interested, the New Zealand government is always looking for volunteers to spend six months on Raoul Island pulling weeds and keeping invasive species off the island. (There, that saves me from doing a Remote Island post to cover this.)

These pumice rafts have been traced back to the eruption of the Havre Seamount (an underwater volcano) on 18 July 2012. This new eruption is part of the “Ring of Fire” in the southwestern part of the Pacific Ocean, roughly 1,000 kilometers northeast of New Zealand. If you believe the Wikipedia article linked to first in this paragraph, the eruption was unknown until an aircraft passenger took pictures of the pumice raft from her plane on 31 July 2012. I have been able to track this pumice back to 26 July 2012. Before that, it is too cloudy, making it difficult to see anything. (Apparently, MODIS saw it on 19 July 2012.)

False color RGB composite of VIIRS channels I-01, I-02 and I-03, taken 01:39 UTC 26 July 2012

False color RGB composite of VIIRS channels I-01, I-02 and I-03, taken 01:39 UTC 26 July 2012

The red arrow points to the pumice raft. There’s a nice looking cyclone southwest of the pumice, but I’m not sure if it was given a name. If you zoom in, you can see Cheeseman Island and Curtis Island off to the east of the raft. These islands were obscured by clouds on the 27 August 2012 overpass. Cheeseman Island is only 7.6 ha (19 acres) and Curtis Island is 40 ha (99 acres), yet VIIRS has the resolution to see them!

In an effort to highlight these pumice rafts, a PCI analysis was performed on the five VIIRS high-resolution imagery (I-band) channels. PCI analysis uses principal components to identify the major modes of variability within the data. Analysis of the 5 VIIRS I-bands resulted in 5 PCIs or component images. Of those components, PCI-2, 3, and 5 appeared to show the pumice rafts. A particular RGB combination of those three components (red = PCI-5, green = PCI-2 and blue = PCI-3) resulted in the pumice appearing red on a green-blue ocean. Clouds are white, then cyan and then red for colder cloud-top temperatures. (Certain pepper-like black pixels are out of range in the PCI analysis.) The three principal components that highlight the pumice rafts are shown in the figure below, along with the resulting RGB composite. Unfortunately, these images were made using McIDAS-X, which has a habit of plotting VIIRS data upside-down. Therefore, north in each image is at the bottom.

PCI Analysis of the 5 VIIRS I-band channels from 01:40 UTC 27 August 2012

PCI Analysis of the 5 VIIRS I-band channels from 01:40 UTC 27 August 2012. Panels A, B, and C are the second, third and fifth principal component images from this analysis (PCI-2, PCI-3 and PCI-5). Panel D is an RGB composite of these three images with PCI-5 as red, PCI-2 as green and PCI-3 as blue. Images courtesy Don Hillger.

This in an image you’ll want to zoom in on to see the details as you consider the information in the previous paragraph. There are two main results of this PCI analysis: it can be used to highlight pumice rafts (although they have the same color as cold cloud tops) and the temperature information from channel I-5 (11.5 µm), which shows up in PCI-5, indicates that the pumice has a tendency to collect along gradients in sea surface temperature.

Being able to track the pumice rafts is important for geology, biology and oceanography. They can act as a tracer for following ocean currents. Some of them crack and fill with water, causing them to sink to the bottom, depositing the newly formed rock in other parts of the sea floor. The nature of the pumice gives clues about what happens in underwater volcanoes, a process that is not well known at this point. And, as these floating pieces of pumice are carried around, organisms like algae, coral, and barnacles will attach to them and grow, eventually settling in far away places. Studying these rafts may shed new light on how life can spread across the oceans.

So, yes – rocks can float. And they can be seen by a weather satellite with 375 m resolution.