December Fluff

By now, you probably know the drill: a little bit of discussion about a particular subject, throw in a few pop culture references, maybe a video or two, then get to the good stuff – high quality VIIRS imagery. Then, maybe add some follow-up discussion to emphasize how VIIRS can be used to detect, monitor, or improve our understanding of the subject in question. Not today.

You see, VIIRS is constantly taking high quality images of the Earth (except during orbital maneuvers or rare glitches). There isn’t enough time in a day to show them all, or go into a detailed discussion as to their relevance. And, nobody likes to read that much anyway. So, as we busily prepare for the upcoming holidays, we’re going to skip the in-depth discussion and get right to the good stuff.

Here then is a sample of interesting images taken by VIIRS over the years that weren’t featured on their own dedicated blog posts. Keep in mind that they represent the variety of topics that VIIRS can shed some light on. Many of these images represent topics that have already been discussed in great detail in previous posts on this blog. Others haven’t. It is important to keep in mind… See, I’m starting to write too much, which I said I wasn’t going to do. I’ll shut up now.

Without further ado, here’s a VIIRS Natural Color image showing a lake-effect snow event that produced a significant amount of the fluffy, white stuff back in November 2014:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (18:20 UTC 18 November 2014)

As always, click on the image to bring up the full resolution version. Did you notice all the cloud streets? How about the fact that the most vigorous cloud streets have a cyan color, indicating that they are topped with ice crystals? The whitish clouds are topped with liquid water and… Oops. I’m starting to discuss things in too much detail, which I wasn’t going to do today. Let’s move on.

Here’s another Natural Color RGB image using the high-resolution imagery bands showing a variety of cloud streets and wave clouds over the North Island of New Zealand:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (02:55 UTC 3 September 2016)

Here’s a Natural Color RGB image showing a total solar eclipse over Scandinavia in 2015:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (10:06 UTC 20 March 2015)

Here’s a VIIRS True Color image and split-window difference (M-15 – M-16) image showing volcanic ash from the eruption of the volcano Sangeang Api in Indonesia in May 2014:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 - M-16) image (06:20 UTC 31 May 2014)

VIIRS split-window difference (M-15 – M-16) image (06:20 UTC 31 May 2014)

Here’s a VIIRS True Color image showing algae and blowing dust over the northern end of the Caspian Sea (plus an almost-bone-dry Aral Sea):

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (09:00 UTC 18 May 2014)

Here is a high-resolution infrared (I-5) image showing a very strong temperature gradient in the Pacific Ocean, off the coast of Hokkaido (Japan):

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

VIIRS I-5 (11.45 um) image (03:45 UTC 12 December 2016)

The green-to-red transition just southeast of Hokkaido represents a sea surface temperature change of about 10 K (18 °F) over a distance of 3-5 pixels (1-2 km). This is in a location that the high-resolution Natural Color RGB shows to be ice- and cloud-free:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (03:45 UTC 12 December 2016)

Here’s a high-resolution infrared (I-5) image showing hurricanes Madeline and Lester headed toward Hawaii from earlier this year:

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

VIIRS I-5 (11.45 um) image (22:55 UTC 30 August 2016)

Here are the Fire Temperature RGB (daytime) and Day/Night Band (nighttime) images of a massive collection of wildfires over central Siberia in September 2016:

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Fire Temperature RGB composite of channels M-10, M-11 and M-12 (05:20 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

VIIRS Day/Night Band image (19:11 UTC 18 September 2016)

Here is a 5-orbit composite of VIIRS Day/Night Band images showing the aurora borealis over Canada (August 2016):

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Day/Night Band image composite of 5 consecutive VIIRS orbits (30 August 2016)

Here is a view of central Europe at night from the Day/Night Band:

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

VIIRS Day/Night Band image (01:20 UTC 21 September 2016)

And, finally, for no reason at all, here’s is a picture of Spain wearing a Santa hat (or sleeping cap) made out of clouds:

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

VIIRS Natural Color RGB composite of channels M-5, M-7 and M-10 (13:05 UTC 18 March 2014)

There you have it. A baker’s ten examples showing a small sample of what VIIRS can do. No doubt it will be taking more interesting images over the next two weeks, since it doesn’t stop working over the holidays – even if you and I do.

(What’s the Story) Middle-of-the-Night Glory?

A Morning Glory is a lot of things: a flower, a town in Kentucky, a popular choice for song and album titles, and – what is most relevant for us – it’s a rare atmospheric phenomenon that is both beautiful and potentially deadly.

For glider pilots, it’s the atmospheric equivalent to catching a 40-wave off the North Shore of Oahu. Like surfing the North Shore, the thrill is in catching a powerful wave and going for a ride, which only happens if you position yourself in the right spot. And, just like surfing a monster wave, one misstep can result in being crushed downward into a pile of jagged rocks and swept out to sea. The difference is, a North Shore wave is 10-12 m high and only travels a 100 m or so until it hits land and stops. A Morning Glory wave is 500-1000 m high and can travel hundreds of kilometers over a period of several hours. Here’s a picture of one:

MorningGloryCloudBurketownFromPlane

“MorningGloryCloudBurketownFromPlane” by Mick Petroff – Mick Petroff. Licensed under CC BY-SA 3.0 via Commons – https://commons.wikimedia.org/wiki/File:MorningGloryCloudBurketownFromPlane.jpg#/media/File:MorningGloryCloudBurketownFromPlane.jpg

Simply put, a Morning Glory is a solitary wave, or “soliton“. We talked about mesospheric bores before, which are another kind of soliton. In this case, however, the soliton propagates through (or along the top of) the atmosphere’s boundary layer. Sometimes, it produces a cloud or series of clouds that came to be known as a “Morning Glory” because these clouds commonly occur near sunrise in the one place on Earth where this event isn’t rare.

Enough talk. The Day/Night Band (DNB) on VIIRS just saw a one. Let’s see if you can see it:

VIIRS DNB image of Australia (15:24 UTC 26 October 2015)

VIIRS DNB image of Australia (15:24 UTC 26 October 2015)

This really is like “Where’s Waldo?” because the image covers a much larger area than the Morning Glory. Even I didn’t see it at first. But, zoom in to the corner of the image over the Gulf of Carpentaria. (You can click on any of these images to see the full resolution version.) Now do you see it?

VIIRS DNB image of the Gulf of Carpentaria (15:24 UTC 26 October 2015)

VIIRS DNB image of the Gulf of Carpentaria (15:24 UTC 26 October 2015)

Once more on the zoom, and it’s obvious:

Same as above, but zoomed in on the Morning Glory.

Same as above, but zoomed in on the Morning Glory.

But, this happened at ~1:30 AM local time – depending on where in that image you are looking – so maybe it’s a Middle-of-the-Night Glory instead of a Morning Glory. (Fun fact: Northern Territory and South Australia are on a half-hour time zone, GMT+9:30. Queensland and the rest of eastern Australia are at GMT+10:00. But, the southern states have Daylight Saving Time while the north and west do not. That means almost every state has it’s own time zone.)

The Gulf of Carpentaria is where Morning Glory clouds are most likely to form. And, this is the peak season for them. (The season runs from late August to mid-November.) What is rare is seeing them so clearly at night.

Since this image was taken one night before a full moon, there was plenty of moonlight available to the DNB to see the “roll clouds” that are indicative of the Morning Glory. You can even see ripples that extend beyond the endpoints of the clouds, which might be some kind of aerosol plume affected by the waves.

There is another way to see this Morning Glory, and it’s what we call the “low cloud/fog product”. The low cloud/fog product is simply the difference in brightness temperature between the longwave infrared (IR) (10.7 µm) and the mid-wave IR (3.9 µm). For low clouds, this difference is positive at night and negative during the day. Here is an example of the low cloud/fog product applied to a new geostationary satellite, Himawari-8:

Animation of AHI Low Cloud/Fog product images (10:00 - 22:50 UTC 26 October 2015)

Animation of AHI Low Cloud/Fog product images (10:00 – 22:50 UTC 26 October 2015)

The Advanced Himawari Imager (AHI) on Himawari-8 is similar to VIIRS, except it has water vapor channels in the IR and it doesn’t have the Day/Night Band. It also stays in the same place relative to the Earth and takes images of the “full disk” every 10 minutes. That’s what allows you to see – in impressive detail – the evolution of this Morning Glory. The low, liquid clouds switch from white to black after sunrise because, as I said, the signal switches from positive (white) to negative (black) at sunrise. Ice clouds (e.g. cirrus) always look black in this product.

Here’s a zoomed in version of the above animation:

As above, except zoomed in to highlight the Morning Glory

As above, except zoomed in to highlight the Morning Glory

Of course, once the sun rises, the standard visible imagery from AHI captures the tail end of the Morning Glory:

Animation of AHI Band 3 images (20:00 - 23:30 UTC 26 October 2015)

Animation of AHI Band 3 images (20:00 – 23:30 UTC 26 October 2015)

And, once again, zoomed in:

As above, except zoomed in to highlight the Morning Glory

As above, except zoomed in to highlight the Morning Glory

At this point, it really is a Morning Glory, since it appeared at sunrise. Of course, at night, only the VIIRS Day/Night Band under full moonlight can show it in “all of its glory”. (Pun definitely intended.)

Pilots take note: the waves can still exist even when the clouds evaporate, and they are a source of severe turbulence.

If you want to know more about the phenomenon, watch this video with a lot of information or this video with a lot of pretty pictures. And, while a lot of people believe the cause of the Morning Glory is still a mystery, one scientist in Germany thinks the cause is now known. You can read all about his and other’s research into the science behind these solitary waves at this webpage.

UPDATE (12/16/2016): We’ve seen more examples of Morning Glory waves and clouds with Himawari-8. The formation of two Morning Glory waves may be seen on our Himawari Loop-of-the-Day webpage here and here. Plus, there is an extended loop covering a two day period shown in this very large animated GIF (83 MB).

Severe Weather in the Mesosphere

So far (*knock on wood*), it’s been a pretty quiet year for severe weather. If you only count tornadoes, there have been 81 tornado reports from 1 January to 4 April this year. (11 of those have come just this week.) This is a lot fewer than the previous three year average of 192 tornadoes by the end of March. For that, you can thank the dreaded, terrifying “Polar Vortex” you’ve heard so much about over the winter. Tornadoes don’t like to come out when it’s cold everywhere. (Although, there was a notable exception on 31 March 2014, when a tornado hit a farm in Minnesota when the area was under a blizzard warning.)

I just said that there have been 11 tornado reports this week. Eight of those came in the past 24 hours. At the southern end of the line that brought the tornadoes to Illinois, Missouri and Texas, the severe weather included golf ball-size hail and this:

25 FEET BY 30 FEET SHED ANCHORED 3 FEET INTO
GROUND...TOTALLY RIPPED OUT AND IMPALED INTO A FENCE AND
A ROOF OF NEIGHBORING HOUSE

That report came from the National Weather Service in Corpus Christi, TX and it was caused by non-tornadic straight-line winds in Orange Grove. Winds capable of ripping a shed out of the ground, combined with golf ball-sized hail – that’s one recipe for broken windows. And it’s not a pleasant way to be awakened at 4:30 in the morning.

A couple of hours earlier, VIIRS caught this severe storm as it was rapidly growing. Here’s what the storm looked like in the high-resolution infrared channel (I-5, 11.45 µm):

VIIRS high-resolution IR image (channel I-5), taken at 08:13 UTC 4 April 2013.

VIIRS high-resolution IR image (channel I-5), taken at 08:13 UTC 4 April 2013.

Make sure you click on the image, then on the “2999×2985″ link below the banner to see the full resolution image, which, for some reason, is the only version where the colors display correctly.

The storm that hit Orange Grove is the southern-most storm, with what looks like a letter “C” imprinted on the top. (That kind of feature typically looks more like a “V” and makes this an “Enhanced-V” storm, which you can learn more about here. Enhanced-V storms are noted for their tendency to produce severe weather.) For those of you keeping score at home, the coldest pixel in this storm is 184.7 K (-88.5 °C).

Compare the image above with the Day/Night Band image below (from the same time):

VIIRS Day/Night Band image, taken at 18:13 UTC 4 April 2014

VIIRS Day/Night Band image, taken at 08:13 UTC 4 April 2014

There are a few interesting features in this image. For one, there’s a lot of lightning over Louisiana, Arkansas and Mississippi. (Look for the rectangular streaks.) There’s even some lighting visible where our “Enhanced-V” is. Two, it takes a lot of cloudiness to actually obscure city lights: only the thickest storm clouds appear to be capable of blocking out light from the surface. Three: there are a lot of boats out in the Gulf of Mexico at 3 o’clock in the morning (and a few oil rigs as well). And four: notice what appear to be concentric rings circling the location where our severe storm is with its enhanced-V.

In this image, there is no moonlight (we’re before first quarter, so the moon isn’t up when VIIRS passes over at night). The light we’re seeing in those ripples is caused by “airglow”, which we’ve seen before. And the ripples themselves may be similar to what is called a “mesospheric bore.” If you don’t want to get too technical, a mesospheric bore is when this happens in the mesosphere. They are related to – but not exactly analogous to – undular bores, which you can read more about here.

Unlike the situation described for the undular bore in that last link, the waves here are caused by our severe storm. To put it simply, we have convection that has formed in unstable air in the troposphere. This convection rises until it hits the tropopause, above which the air is stable. This puts a halt to the rising motion of the convection but, some of the air has enough momentum to make it in to the stratosphere. This is called the “overshooting top“, and is where our -88°C pixels are located. (Look for the pinkish pixels in the middle of the “C” in the full-resolution infrared image.) The force of this overshooting top creates waves in the stable layer of air above (the stratosphere) that propagate all the way up into the mesosphere. The mesosphere is where airglow takes place, and these waves impact the optical path length through the layer where light is emitted. This of course, impacts the amount of light we see. The end result: a group of concentric rings of airglow light surrounding our storm.

You could make the argument that the waves we see in the Day/Night Band image are not an example of a bore. Bores tend to be more linear and propagate in one direction. These waves are circular and appear to propagate in all directions out from a central point. It may be better to describe them as “internal buoyancy waves“, which are similar to what happens when you drop a pebble into a pond. Only, in this case the pebble is a parcel of air traveling upwards, and the surface of the water is a stable layer of air. Compare the pebble drop scenario with this video of a bore traveling upstream in a river to see the difference.

In fact, if you look closer at the Day/Night Band image, in the lower-right corner (over the Gulf of Mexico) there is another group of more linear waves and ripples in the airglow that may actually be from a bore. It’s hard to say for sure, though, without additional information such as temperature, local air density, pressure and wind speeds way up in that part of the mesosphere.

By the way, you can see mesospheric bores and other waves in the airglow if you have sensitive-enough camera, like the one that took this image:

Photograph of a mesospheric bore. Image courtesy T. Ashcraft and W. Lyons (WeatherVideoHD.TV)

Photograph of a mesospheric bore. Image courtesy T. Ashcraft and W. Lyons (WeatherVideoHD.TV)

And, if you’re interested, the Arecibo Observatory has a radar and optical equipment set up to look at these upper-atmosphere waves (scroll down to Panel 2 on this page). The effect of these waves on atmospheric energy transport is a hot topic of research.

Golf ball-sized hail at the Earth’s surface is related to energy transport 100 km up in the atmosphere!

 

NOTE: This post has been updated since it was first written to clarify that the circular waves are likely not evidence of a bore, as was originally implied. They are more likely internal buoyancy waves, which are also known as gravity waves. For more information, consult your local library.

Remote Islands, part III: Îles Kerguelen and Heard Island

 

At 10 o’clock the Captain was walking on deck and saw what he supposed to be an immense iceberg. … the atmosphere was hazy, and then a heavy snow squall came up which shut it out entirely from our view. Not long after the sun shone again, and I went up again and with the glass, tried to get an outline of it to sketch its form. The sun seemed so dazzling on the water, and the tops of the apparent icebergs covered with snow; the outline was very indistinct. We were all the time nearing the object and on looking again the Captain pronounced it to be land. The Island is not laid down on the chart, neither is it in the Epitome, so we are perhaps the discoverers, … I think it must be a twin to Desolation Island, it is certainly a frigid looking place.

VIIRS false color composite of channels I-01, I-02 and I-03, taken 09:16 UTC 27 October 2012

VIIRS false color composite of channels I-01, I-02 and I-03, taken 09:16 UTC 27 October 2012

The text above was the journal entry of Isabel Heard, wife of the American Captain John Heard, on 25 November 1853. The couple was en route from Boston, Massachusetts to Melbourne, Australia (a long time to spend in a boat) and the land they spotted became known as Heard Island. It should be noted that “Desolation Island” refers to Îles Kerguelen, which has its own unique story of discovery.

Kerguelen Island was discovered in 1772 by Yves-Joseph de Kerguelen de Trémarec, a French navigator commissioned by King Louis XV to discover the unknown continent in the Southern Hemisphere that he believed to be necessary to balance the globe. (Look at a globe or map of the world and notice that most of the land area is in the Northern Hemisphere.) Kerguelen himself never set foot on the island, but he told his king the island was inhabited and full of forests, fruits and untold riches. He called it “La France Australe” (Southern France). Captain Cook actually did land on the island a few years later and named it Desolation Island because it had none of that stuff, and King Louis XV imprisoned Kerguelen after his lie was discovered. Oops.

Îles Kerguelen, made up of the main island (Kerguelen to us, La Grande Terre to the French) and the many small surrounding islands are part of the French Southern and Antarctic Lands (Terres Australes et Antarctiques Françaises or TAAF). Heard Island is part of the Australian territory of Heard Island and McDonald Islands (HIMI).

These islands are in the “Roaring Forties” and “Furious Fifties”, the region of the Southern Ocean (southern Indian Ocean in this case) between 40 °S and 60 °S latitude. Get out your globe or world map once again and notice that there is very little land in this latitude range. This region is where strong, persistent westerly winds circle the globe. With no land in the way, there isn’t much to disturb this flow. The high winds almost always from the same direction create huge waves of 10 m (33 ft) or more. (Now imagine being John or Isabel Heard. Well, actually, if you suffer from sea-sickness you probably shouldn’t imagine it.) The cold winds flow over the relatively warmer waters of the ocean, forming persistent cloudiness. If you zoom in on the image above (click on the image, then on the “1893×1452″ link below the banner for full resolution) you can see quite a bit of structure in the resulting “cloud streets“.

The persistent cloudiness makes Kerguelen and Heard Island a rare sight from any satellite. We can see them here because the flow is stable and the islands are producing the equivalent of a “rain shadow” on the clouds. (It’s tempting to call it a “cloud shadow” but, since clouds actually do cast shadows, it would just confuse people.) If we zoom in on Kerguelen, this shows up more clearly:

VIIRS false-color RGB composite of channels I-01, I-02 and I-03 taken 09:16 UTC 27 October 2012

VIIRS false-color RGB composite of channels I-01, I-02 and I-03 taken 09:16 UTC 27 October 2012

Notice how all the clouds are piling up on the west (windward) side of Kerguelen, where the highest mountains, are located. (These mountains are covered with snow and glaciers, as the cyan color indicates.) Could that be the equivalent of a bow shock near 68 °E longitude where there is an apparent crack in the clouds? On the leeward side of the island, downwind of the mountains, the air is descending, which prevents clouds from forming. Kerguelen created a hole in the clouds by disrupting the flow.

Now, let’s zoom in on Heard Island:

VIIRS false-color RGB composite of channels I-01, I-02 and I-03 taken 09:16 UTC 27 October 2012

VIIRS false-color RGB composite of channels I-01, I-02 and I-03 taken 09:16 UTC 27 October 2012

In addition to creating a hole in the clouds, Heard Island is creating all sorts of waves in the atmosphere. The ones you probably noticed first look like the wake created by a boat (and have the same basic cause). But, why do they start well out ahead of the island where the yellow arrow is pointing? Because those first waves are actually caused by the McDonald Islands (discovered by Capt. William McDonald in 1854). Even though the highest point on McDonald Island is only 186 m above mean sea level (610 ft), it’s enough to disrupt the flow.

The highest point on Heard Island is Mawson Peak at 2745 m (9006 ft), which is actually the highest elevation in Australia. It is part of Big Ben, an active volcano that last erupted in 2008. This peak is creating a series of lenticular clouds in the above image. A patch of cirrus clouds also exists downwind of Heard Island (the more cyan colored clouds), although it is not clear if these clouds were formed by the waves caused by Heard Island.

If you’re interested in visiting either of these islands, here are some other interesting facts: Kerguelen has a year-round population of ~100, almost all scientists. It has a permanent weather station and office maintained by Météo-France (France’s version of the National Weather Service), and the French version of NASA (CNES) has a station for launching rockets and monitoring satellites. Heard Island has no permanent residents. Every few years a scientific expedition sets out for the island to study the geology, biology, weather and climate of the island. The next one is planned for 2014 and is being called an “open source expedition”. There may still be time to join in if you’re looking for an adventure!

Cape Verde Waves and Plumes

Cape Verde is an island nation off the west coast of Africa, located in the North Atlantic. The islands are a popular initiation point for tropical storms. The original capital of the 10-island archipelago was sacked twice by Sir Francis Drake, the same one who, in his later years, would fail to sack the villages along Lake Maracaibo in Venezuela due to Catatumbo lightning. That guy really got around, and I mean that literally: he circumnavigated the globe between 1577 and 1580, sacking nearly every village and boat he came across. But, this isn’t about Francis Drake – it’s about the Cape Verde islands and the amazing view of them captured by VIIRS.

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 6 June 2012

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012

Can you see the 10 major islands? One of them (Santa Luzia) is almost obscured by clouds. If you click on the image, you’ll see each of the major islands identified. Go ahead and click on it. It will help for later.

The image above was made from the RGB composite of VIIRS high-resolution imagery channels I-01, I-02 and I-03. While it technically is a false color image (uses reflectance at 0.64 µm [blue],  0.865 µm [green] and 1.61 µm [red]), it looks realistic in many situations, so that we refer to it as “pseudo-true color”. Snow and ice show up as an unrealistic blue, however, which is the main difference between it and a “true color” image. You might also notice a few more differences between the “pseudo-true color” image above and the “true color” image below.

True color RGB composite of VIIRS channels M-3, M-4 and M-5 taken 14:41 UTC 6 June 2012

True color RGB composite of VIIRS channels M-3, M-4 and M-5 taken 14:41 UTC 5 June 2012

The true color image uses moderate resolution channels M-3 (0.48 µm, blue), M-4 (0.55 µm, green) and M-5 (0.67 µm, red), which actually observe radiation in the blue, green and red portions of the visible spectrum. Apart from differences in resolution, the vegetation on the islands shows up a bit better in the “pseudo-true color” image. The islands just look brown in the true color image.

What is particularly interesting about these images are the visible effect that the islands have on the local atmosphere. Downwind (southwest, or to the lower left) of Sal, Boa Vista, and Maio, you can see singular cloud streets, much like the flow of water around a rock. In the photograph in that link, you can see how the water dips downward on both sides of the center line downstream of the rock, and upward in the middle (along the center line). The islands are acting like rocks in the atmosphere, causing upward motion behind them, and this lift was enough to form cloud streets. On either side of these cloud streets there is downward motion and, as a result, clear skies.

Downwind of São Nicolau, São Vicente and Santo Antão, the cloud streets highlight von Kármán vortices and vortex shedding, which you can see in more-controlled lab conditions here and here.

Many of the islands appear to be producing their own aerosol plumes (i.e. dust), and if you zoom in on the area between Boa Vista and Santiago, you can see gravity waves present in some of the plumes (highlighted by the arrows in the image below).

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012

A common way to detect dust is the “split-window difference”: the difference in brightness temperature between the 11 µm channel and the 12 µm channel. On VIIRS, this means subtracting M-16 from M-15 which, when you do that, gives you this image:

Split-window difference from VIIRS (M15 minus M16) from 14:41 UTC 5 June 2012

Split-window difference from VIIRS (M15 minus M16) from 14:41 UTC 5 June 2012

The color scale goes from -0.16 K (black) to +4.0 K (white). For some reason, the dust or aerosol plumes don’t produce a strong signal here. It may be that the dust is too low in the atmosphere and the lack of temperature contrast with the surface prevents a strong signal. Maybe water vapor absorption effects in M16 are washing out the signal. Or, there could be some other explanation waiting to be discovered.

The plumes are highly reflective in the 3.7 µm channel (M-12), as are the clouds, which show up as warm spots in the image below (not as warm as the islands, however):

Moderate resolution 3.7 µm image (M-12) from VIIRS, taken 14:14 UTC 5 June 2012

Moderate resolution 3.7 µm image (M-12) from VIIRS, taken 14:41 UTC 5 June 2012

Here, just to throw you off, the color scale has been reversed so that dark colors mean higher values. The scale ranges from 295 K (white) to 330 K (black). When you take the difference of this image and the 10.6 µm brightness temperature (M-15), the clouds and aerosol plumes really show up, along with the gravity waves and vortices:

Brightness temperature difference between VIIRS channels M-12 and M-15 from 14:14 UTC 5 June 2012

Brightness temperature difference between VIIRS channels M-12 and M-15 from 14:41 UTC 5 June 2012

In this case, the M-12 brightness temperatures are always greater than the M-15 brightness temperatures (due to the combination of Earth’s emission and solar reflection in M-12 as opposed to just surface emission in M-15), so the scale varies from +5 K (black) to +30 K (white). Higher (brighter) values on this scale show off where the most solar reflection occurs at 3.7 µm – the liquid clouds and aerosol plumes.

There are much more sophisticated ways of identifying dust and aerosol plumes. To find out more, check out this article written by one of our resident experts, Steve Miller, who is currently working on applying dust detection algorithms to VIIRS.

If you are more interested in the von Kármán vortices, NASA has put together a great page that you can visit here. If you take the original image in this post, zoom out and rotate it a little bit, you can get a sense of just how far the vortices extend from their parent islands:

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012

False color RGB composite of VIIRS channels I-1, I-2 and I-3 taken 14:41 UTC 5 June 2012. This image has been rotated from the previous images to highlight the length of the vortex streets.

Coincidentally, this image has been cropped to a size that makes it suitable for use as a desktop wallpaper, should you happen to have a 16:9-ratio monitor and a desire to stare at this image all day. (You have to click on the image, then click on the “1920 x 1080″ link below the header to get the full resolution image.)