The Sirocco and the Giant Bowl of Dust

As mentioned before on this blog, there are typhoons, hurricanes, and cyclones, and they’re all basically the same thing. They’re just given a different name depending on where they occur in the world. Similarly, there are many different names for winds (not counting the classification of wind speeds developed by a guy named Beaufort). There’s the Chinook, the Santa Ana, the bora, the föhn (or foehn), the mistral, the zonda, the zephyr and the brickfielder. (A more complete list is here.) Some of these winds are different names for the same phenomenon occurring in different parts of the world, like the föhn, the chinook, the zonda and the Santa Ana. Others are definitely different phenomena, with different characteristics (compare the mistral with the brickfielder), but they all have the same basic cause: the atmosphere is constantly trying to equalize its pressure.

The Mediterranean is home to wide variety of named winds, one of which is the sirocco (or scirocco). (Europe is home to wide variety of languages, so this wind is also known as “ghibli,” “jugo” [pronounced “you-go”], “la calima” and “xlokk” [your guess is as good as mine].) Sirocco is the name given to the strong, southerly or southeasterly wind originating over northern Africa that typically brings hot, dry air and, if it’s strong enough, Saharan dust to Europe. Of course, after picking up moisture from the Mediterranean, the wind becomes humid, making life unpleasant for people along the north shore. Hot, humid and full of dust. Perhaps it’s no surprise that the sirocco is believed to be a cause of insomnia and headaches.

Now, I don’t know how hot it was, but an intense low pressure system passed through the Mediterranean around Leap Day and, out ahead of it, strong, southerly winds carried quite a bit of dust from northern Africa into Italy.  Here’s what it looked like in Algeria. And here’s what it looked like in Salento. See if you can see that dust in these True Color VIIRS images:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:09 UTC 28 February 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:09 UTC 28 February 2016).

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (11:48 UTC 29 February 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (11:48 UTC 29 February 2016)

No problem, right? With True Color imagery, the dust is usually easy to identify and distinguish from clouds and the ocean because it looks like dust. It’s the same color as the sky over Salento, Italy in that video I linked to. The top image shows multiple source regions of dust (mostly Libya, with a little coming from Tunisia) being blown out over the sea. The second image shows one concentrated plume being pulled into the clouds over the Adriatic Sea, headed for Albania and Greece.

By the way, this storm system brought up to 2 meters (6.5 feet) of snow to northern Italy, and even brought measurable snow to Algeria! Africa and Europe made a trade: you take some of my dust, and I’ll take some of your snow.

But, this wasn’t the worst dust event to hit Europe recently. Here’s what the VIIRS True Color showed over Spain and Portugal on 21 February 2016:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:40 UTC 21 February 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (12:40 UTC 21 February 2016).

And VIIRS wasn’t the only one to see this dust. Here’s a picture taken by Tim Peake, an astronaut on the International Space Station. Again, it’s easy to pick out the dust because it almost completely obscures the view of the background surface. But, what if the background surface is dust colored?

We switch now to the other side of the world and the Takla Makan desert in China, where the dust has been blowing for the better part of a week:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:11 UTC 4 March 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:11 UTC 4 March 2016).

Can you tell what is dust and what is the desert floor? Can you see the Indian Super Smog on the south side of the Himalayas? Here is the same scene on a clear (no dust) day:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:49 UTC 2 March 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (07:49 UTC 2 March 2016).

There is a subtle difference there, but you need good eyesight to see it. It might be easier to see if you loop the images:

Animation of VIIRS True Color images (1-7 March 2016)

Animation of VIIRS True Color images of the Takla Makan desert (1-7 March 2016).

You’ll have to click on the image to see it animate.

Did you notice the dark brown areas surrounding the Takla Makan? Those are areas that have green vegetation during the summer. Notice how they become completely obscured by the dust as the animation progresses. That’s one one way to tell that there’s dust there. But, as we have seen before, there are other ways to see the dust.

There’s EUMETSAT’s Dust RGB composite applied to VIIRS:

Animation of VIIRS EUMETSAT Dust RGB images (1-7 March 2016)

Animation of VIIRS EUMETSAT Dust RGB images of the Takla Makan desert (1-7 March 2016).

That’s another animation, by the way, so you’ll have to click on it to see it animate. The same is true for the Dynamic Enhanced Background Reduction Algorithm (DEBRA), which we also talked about before:

Animation of VIIRS DEBRA Dust Product images (1-7 March 2016)

Animation of VIIRS DEBRA Dust Product images of the Takla Makan desert (1-7 March 2016)

But, there’s one more dust detection technique we have not discussed before: the “blue light absorption” technique:

Animation of VIIRS Blue Light Dust images (1-7 March 2016)

Animation of VIIRS Blue Light Dust images of the Takla Makan desert (1-7 March 2016).

The Blue Light Dust detection algorithm keys in on the fact that many different kinds of dust absorb blue wavelengths of light more than the longer visible wavelengths. It uses this information to create an RGB composite where dust appears pastel pink, clouds and snow appear blueish and bare ground appears green. Of course, other features can absorb blue light as well, like the lakes near the northeast corner of the animation that show up as pastel pink. But, depending on your visual preferences and ability to distinguish color, the Blue Light Dust product gives another alternative to the hot pink of the EUMETSAT Dust RGB, the yellow of DEBRA, and the slightly paler tan of the True Color RGB.

One question you might ask is, “How come DEBRA shows a more vivid signal than the other methods?” In the True Color RGB, dust is slightly more pale than the background sand, because it’s made up of (generally) smaller sand particles (which are more easily lofted by the wind) that scatter light more effectively, making it appear lighter in color. In the EUMETSAT Dust RGB, dust appears hot pink because the “split window difference” (12 µm – 10.7 µm) is positive, while the difference in brightness temperatures between 10.7 µm and 8.5 µm is near zero and the background land surface is warm. In DEBRA, the intensity of the yellow is related to the confidence that dust is present in the scene based on a series of spectral tests. DEBRA is confident of the presence of dust even when the signals may be difficult to pick out in the other products, either because it’s a superior product, or because its confidence is misguided. (Hopefully, it’s the former and not the latter.)

By the way, the Takla Makan got its name from the native Uyghurs that live there. Takla Makan means “you can get in, but you can’t get out.” It has also been called the “Sea of Death.” I prefer to call it “China’s Big Bowl of Dust.” It’s a large area of sand dunes (bigger than New Mexico, but smaller than Montana) surrounded on most of its circumference by mountains between 5000 and 7000 m (~15,000-21,000+ feet!). The average annual rainfall is less than 1.5 inches (38 mm). That means when the wind blows it easily picks up the dusty surface, but that dust can’t go anywhere because it’s blocked by mountains (unless it blows to the northeast). The dust is trapped in its bowl.

The Takla Makan is also important historically, because travelers on the original Silk Road had to get around it. Notice on this map, there were two routes: one that skirted the northern edge of the Takla Makan and one that went around the southern edge. This part of Asia was the original meeting point between East and West.

CIRA produces all four imagery products over the Takla Makan desert in near-real time, which you can find here. And, in case you’re curious, you can check out how well DEBRA and the EUMETSAT Dust products compare for the dust-laden siroccos over southern Europe and northern Africa by clicking here and here (for the first event over Spain and Portugal) or here and here (for the second one over Italy and the Adriatic Sea).

Horrendous Haboob in the Heart and Heat of History’s Homeland

We mentioned India earlier this year due to a hellish heatwave. It’s only fair that we talk about one of the other cradles of civilization (human history) and another horrible weather-related h-word.

People have been living along the Nile River in northeastern Africa and on the Arabian Peninsula for thousands of years (dating back to the Paleolithic Era). And, every once in a while, a story comes along that makes you wonder why. I’m not talking about the never-ending human conflict that has plagued the region. I’m talking about the hostile climate. (Of course, it wasn’t always hostile. There have been periods of abundant moisture. Read this. Or this.)

If you’ve watched Raiders of the Lost Ark, you are no-doubt familiar with the ancient city of Tanis, and the story about it that was the basis of the whole plot of the movie. If you haven’t seen the movie: 1) shame on you; and, 2) watch this clip.

“The city of Tanis was consumed by the desert in a sandstorm that lasted a whole year.”

I hate to be the bearer of bad news but, that part of the story is false. No year-long sandstorm hit Tanis. And, despite rumors that the actual Ark is buried in Tanis, it has never been found. (Because it’s stored in a giant government warehouse! Duh!) Plus, Indiana Jones is a fictional character in a movie. But, the movie is not entirely false. According to this article, a major archaeological find did take place at Tanis right before World War II (led by a French archaeologist, no less), and very few people know about it because of the war. Plus, there really was an Egyptian Pharaoh named Shoshenq/Shishak.

Even if Tanis was not buried by a year-long sandstorm, that doesn’t mean nasty sandstorms don’t exist. In fact, most of the Middle East is still dealing with a massive sandstorm that lasted a whole week last week. This storm put Beijing’s air pollution to shame. In fact, the dust reached the highest concentrations ever recorded in Jerusalem since Israel became it’s own country in 1948. It was responsible for several fatalities. Here are some pictures. Here’s a video from Saudi Arabia. Here’s what it looked like in Jordan and Lebanon. And, of course, what follows is what the storm looked like in VIIRS imagery.

Since this dust storm lasted a whole week, we got plenty of VIIRS imagery of the event. It started on the afternoon of 6 September 2015, and here’s the first VIIRS True Color image of it:

VIIRS True Color image of channels M-3, M-4 and M-5 (10:06 UTC 6 September 2015)

VIIRS True Color image of channels M-3, M-4 and M-5 (10:06 UTC 6 September 2015)

Can you see it? (Click on the image to see the full resolution version.) A trained eye can spot it from this image alone. An untrained eye might have difficulty distinguishing it from the rest of the desert and sand. Look for the tan blob over Syria that is obscuring the view of the Euphrates river.

If you can see that, you can track it over the rest of the week:

Animation of VIIRS True Color images (6-12 September 2015)

Animation of VIIRS True Color images (6-12 September 2015)

This animation was reduced to 33% of it’s original size to limit the bandwidth needed to display it. It contains the afternoon overpasses (1 image per day) because you need sunlight to see things in true color. And, while it suffers from the fact that animated GIFs only allow 256 colors (instead of the 16,777,216 colors possible in the original images), you should be able to see the dust “explode” over Israel, Lebanon and Jordan over the next two days. It eventually advects over northwestern Saudi Arabia, Egypt and Cyprus during the rest of the week.

The last time we looked at a major dust storm, the dust was easy to see. It was blown out over the ocean, which is a nice, dark background to provide the contrast needed to see the dust. Here, the dust is nearly the same color as the background – because it is made out of what’s in the background. Is there a better way to detect dust in situations like this?

EUMETSAT developed an RGB composite explicitly for this purpose, and they call it the “Dust RGB.” And we’ve talked about it before. And, here’s what that looks like:

Animation of EUMETSAT Dust RGB images from VIIRS (6-12 September 2015)

Animation of EUMETSAT Dust RGB images from VIIRS (6-12 September 2015)

Since this RGB composite uses only infrared (IR) channels, it works at night (although not as well) so you can get twice as many images over this time period. It also makes dust appear hot pink. The background appears more blue in the daytime images, so the dust does stand out. But, the background becomes more pink/purple at night, so the signal is harder to see at those times. Still, you can see the dust spread from Syria to Egypt over the course of the week.

My colleagues at CIRA have developed another way to identify dust: DEBRA. DEBRA is an acronym for Dynamic Enhanced Background Reduction Algorithm. As the name implies, DEBRA works by subtracting off the expected background signal, thereby reducing the background and enhancing the signal of the dust. So, instead of trying to see brown dust over a brown background (i.e. True Color RGB) or trying to see hot pink dust over a pinkish/purplish background (i.e. EUMETSAT Dust RGB) you get this:

Animation of VIIRS "DEBRA Dust" images (6-11 September 2015)

Animation of VIIRS “DEBRA Dust” images (6-11 September 2015)

DEBRA displays dust as yellow over a grayscale background. The intensity of the yellow is related to the confidence that a given pixel contains dust. It could display dust as any color of the rainbow, but yellow was chosen specifically because there are fewer people that are colorblind toward yellow than any other type of colorblindness. That makes the dust very easy to see for nearly everyone. (Sorry, tritanopes and achromats.) One of the biggest complaints about RGB composites is that the 7-12% of the population that has some form of colorblindness have difficulty trying to see what the images are designed to show. (Since I’m so fond of RGB composites, I better check my white male trichromat privilege. Especially since, according to that last link, white males are disproportionately colorblind.) The point is: we now have a dust detection algorithm that works well with (most) colorblind people, and it makes dust easier to see even for people that aren’t colorblind. DEBRA also works at night, but I’ve only shown daytime images here to save on filesize.

The last two frames of the DEBRA animation show something interesting: an even more massive dust storm in northern Sudan and southern Egypt! Fortunately, fewer people live there, but anyone who was there at the time must have a story to tell about the experience. Here are closer up views of that Sudanese sandstorm (or should I say “haboob” since this is the very definition of the word?). First the True Color:

VIIRS True Color image (10:32 UTC 10 September 2015)

VIIRS True Color image (10:32 UTC 10 September 2015)

Next, the EUMETSAT Dust RGB:

VIIRS EUMETSAT Dust RGB image (10:32 UTC 10 September 2015)

VIIRS EUMETSAT Dust RGB image (10:32 UTC 10 September 2015)

And, finally DEBRA:

MSG-3 DEBRA Dust image (10:30 UTC 10 September 2015)

MSG-3 DEBRA Dust image (10:30 UTC 10 September 2015)

If you’re wondering why the DEBRA image doesn’t seem to line up with the other two, it’s because I cheated. The DEBRA image came from the third Meteosat Second Generation satellite (MSG-3), which is a geostationary satellite. The majority of the haboob was outside our normal VIIRS processing domain for DEBRA, so I grabbed the closest available MSG-3 image. It has much lower spatial resolution, but similar channels, so DEBRA works just as well. And, you don’t necessarily need high spatial resolution to see a dust storm that is ~ 1000 km across. What MSG-3 lacks in spatial resolution, it makes up for in temporal resolution. Instead of two images per day, you get 1 image every 15 minutes. Here is a long loop of MSG-3 images over the course of the whole week, where you can see both sandstorms: (WARNING: this loop may take a long time to load because it contains ~600 large images). Keep your eye on Syria early on, then on Egypt and Sudan. Both haboobs appear to be caused by the outflow of convective storms. Also, how many other dust storms are visible over the Sahara during the week? For comparison purposes, here’s a similar loop of EUMETSAT Dust images. (MSG-3 does not have True Color capability.)

These sandstorms have certainly made their impact: they’ve broken poor air quality records, killed people, made life worse for refugees, closed ports and airports, and even affected the Syrian civil war.  Plus, the storms coincided with a heatwave. Having +100 °F (~40 °C) temperatures, high humidity and not being able to breathe because of the dust sounds awful. Correction: it is awful. And, life goes on in the Middle East.


UPDATE #1 (17 September 2015): Here’s a nice, zoomed-in, animated GIF of the Syrian haboob as seen by the DEBRA dust algorithm, made from MSG-3 images:

Click to view 59 MB Animated GIF

UPDATE #2 (17 September 2015): Steve M. also tipped me off to another – even more impressive – haboob that impacted Iraq at the beginning of the month (31 August – 2 September 2015). Here’s an animation of the DEBRA view of it:

Click to view 28 MB Animated GIF

This dust storm was even seen at night by the Day/Night Band, thanks to the available moonlight:

VIIRS Day/Night Band image of Iraq (22:43 UTC 31 August 2015)

VIIRS Day/Night Band image of Iraq (22:43 UTC 31 August 2015)

Look at that cute little swirl. Well, it would be cute if it weren’t so hazardous.