Single-Purpose Flour

Think of a snowflake. What happens when that snowflake hits the ground? Now, picture other snowflakes – millions of them – all hitting the ground and piling up on top of each other, crushing our first poor snowflake. Skiers love to talk (and dream) about “fresh powder.” But, what happens when the “powder” isn’t so fresh?

Those delicate, little snow crystals we imagine (or look at directly, if we click on links included in the text) undergo a transformation as soon as they hit the ground. Compression from the weight of the snow above, plus the occasional partial thaw and re-freeze cycle (when temperatures are in the right range), breaks up the snow flakes and converts the 6-pointed crystals into more circular grains of snow. As more and more snow accumulates on top, the air in between the individual snowflakes/grains (which is what helps make it a good insulator) gets squeezed out, making the snow more dense. If enough time passes and enough snow accumulates, individual snow grains can fuse together. These bonded snow grains are called “névé.” If this extra-dense snow can survive a whole summer without melting, then a second winter of this compaction and compression will squeeze out more air and fuse more snow grains, creating the more dense “firn.” After 20 or 30 years of this, what once was a collection of fragile snowflakes becomes a nearly solid mass of ice that we call a “glacier.” Glaciers can be made up of grains that are several inches in length.

But, you don’t need to hear me say it (or read me write it), you can watch a short video where a guy in a thick Scottish accent explains it. (Did you notice his first sentence was a lie? Snow is made of frozen water, so glaciers are made of frozen water, since they are made of snow. I think what he means is that glaciers aren’t formed the same way as a hockey rink, but the way he said it is technically incorrect.) At the end of the video, the narrator hints at why we are looking at glaciers today: glaciers have the power to grind down solid rock.

When a glacier forms on a non-level surface, gravity acts on it, pulling it down the slope. This mass of ice and friction from the motion acts like sandpaper on the underlying rock, converting the rock into a fine powder known as “glacial flour” or, simply, “rock flour.” In the spring and summer months, the meltwater from the glacier collects this glacial flour and transports it downstream, where it may be deposited on the river’s banks. During dry periods, it doesn’t take much wind to loft these fine particles of rock into the air, creating a unique type of dust storm that is not uncommon in Alaska. One that can be seen by satellites.

And, wouldn’t you know it, a significant event occurred at the end of October. Take a look at this VIIRS True Color image from 23 October 2016:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:24 UTC 23 October 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:24 UTC 23 October 2016)

See the big plume of dust over the Gulf of Alaska? Here’s a zoomed in version:

Zoomed in version of above image.

Zoomed in version of above image.

That plume of dust is coming from the Copper River delta. The Copper River is fed by a number of glaciers in Wrangell-St. Elias National Park, plus a few in the Chugach Mountains so it is full of glacial sediment and rock flour (as evidenced by this photo). And, it’s amazingly full of salmon. (How do they see where they’re going when they head back to spawn? And, that water can’t be easy for them to breathe.)

Notice also that we have the perfect set-up for a glacial flour dust event on the Copper River. You can see a low-pressure circulation over the Gulf of Alaska in the above picture, plus we have a cold, Arctic high over the Interior shown in this analysis from the Weather Prediction Center. For those of you familiar with Alaska, note that temperatures were some 30 °F warmer during the last week in October in Cordova (on the coast) than they were in Glennallen (along the river ~150 miles inland). That cold, dense, high-pressure air over the interior of Alaska is going to seek out the warmer, less dense, low-pressure air over the ocean – on the other side of the mountains – and the easiest route to take is the Copper River valley. The air being funneled into that single valley creates high winds, which loft the glacial flour from the river banks into the atmosphere.

Now, depending on your preferences, you might think that the dust shows up better in the Natural Color RGB composite:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:24 UTC 23 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:24 UTC 23 October 2016).

But, everyone should agree that the dust is even easier to see the following day:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:01 UTC 24 October 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:01 UTC 24 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:01 UTC 24 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (21:01 UTC 24 October 2016)

You can also see a few more plumes start to show up to the southeast, closer to Yakutat.

Since Alaska is far enough north, we get more than one daytime overpass every day. Here’s the same scene on the very next orbit, about a 100 minutes later:

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:42 UTC 24 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:42 UTC 24 October 2016)

Notice that the dust plume appears darker. What is going on? This is a consequence of the fact that glacial flour, like many aerosol particles, has a tendency to preferentially scatter sunlight in the “forward” direction. At the time of the first orbit (21:01 UTC), both the sun and the dust plume are on the left side of the satellite. The sunlight scatters off the dust in the same (2-dimensional) direction it was traveling and hits the VIIRS detectors. In the second orbit (22:42 UTC), the dust plume is now to the right of the satellite, but the sun is to the left. In this case, forward scattering takes the sunlight off to the east, away from the VIIRS detectors. With less backward scattering, the plume appears darker. This has a bigger impact on the Natural Color imagery, because the Natural Color RGB uses longer wavelength channels where forward scattering is more prevalent. Here’s the True Color image from the second orbit:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (22:42 UTC 24 October 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (22:42 UTC 24 October 2016)

The plume is a little darker than the first orbit, but not by as much as in the Natural Color imagery. Here are animations to show that:

Animation of VIIRS True Color images (24 October 2016)

Animation of VIIRS True Color images (24 October 2016)

Animation of VIIRS Natural Color images (24 October 2016)

Animation of VIIRS Natural Color images (24 October 2016)

There are many other interesting details you can see in these animations. For one, you can see turbid waters along the coast in the True Color images that move with the tides and currents. These features are absent in the Natural Color because the ocean is not as reflective at these longer wavelengths. You can also see the shadows cast by the mountains that move with the sun. Some of the mountains seem to change their appearance because VIIRS is viewing them from a different side.

The dust plumes were even more impressive on 25 October 2016, making this a three-day event. The same discussion applies:

VIIRS True Color composite of channels M-3, M-4 and M-5 (20:43 UTC 25 October 2016)

VIIRS True Color composite of channels M-3, M-4 and M-5 (20:43 UTC 25 October 2016)

VIIRS True Color composite of channels M-3, M-4 and M-5 (22:26 UTC 25 October 2016)

VIIRS True Color composite of channels M-3, M-4 and M-5 (22:26 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (20:43 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (20:43 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:26 UTC 25 October 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2 and I-3 (22:26 UTC 25 October 2016)

Full disclosure, yours truly drove through a glacial flour dust storm along the Delta River on the north side of the Alaska Range back in 2015. Even though it was only about a mile wide, visibility was reduced to only a few hundred yards beyond the hood of my car. It felt as dangerous as driving through any fog. The dust event shown here was not a hazard to drivers, since it was out over the ocean, but it was a hazard to fisherman. Being in a boat near one of these river deltas means dealing with high winds and high waves. To forecasters, these dust plumes provide information about the wind on clear days (when cloud-track wind algorithms are no help), which is useful in a state with very few surface observing sites to take advantage of.

The last remaining issue for the day is one of terminology. You see, “glacial flour dust storm” is a mouthful, and acronyms aren’t always the best solution. (GFDS, anyone?) “Haboob” covers desert dust. “SAL” or “bruma seca” covers Saharan dust specifically. So, what should we call these dust events? Something along the lines of “rock flour”, only more proactive! And, Dusty McDustface is right out!

Watch for Falling Rock

Q: When a tree falls in the forest and nobody is around to hear it, does it make a sound?

A: Yes.

That’s an easy question to answer. It’s not a 3000-year-old philosophical conundrum with no answer. Sound is simply a pressure wave moving through some medium (e.g. air, or the ground). A tree falling in the forest will create a pressure wave whether or not there is someone there to listen to it. It pushes against the air, for one. And it smacks into the ground (or other trees), for two. These will happen no matter who is around. As long as that tree doesn’t fall over in the vacuum of space (where there is nothing to transmit the sound waves and nothing to crash into), that tree will make “a sound”. (There are also sounds that humans cannot hear. Think of a dog whistle. Does that sound not exist because a human can’t hear it?)

What if it’s not a tree? What if it’s 120 million metric tons of rock falling onto a glacier? Does that make a sound? To quote a former governor, “You betcha!” It even causes a 2.9 magnitude earthquake!

That’s right! On 28 June 2016, a massive landslide occurred in southeast Alaska. It was picked up on seismometers all over Alaska. And, a pilot who regularly flies over Glacier Bay National Park saw the aftermath:

If you didn’t read the articles from the previous links, here’s one with more (and updated) information. And, according to this last article, rocks were still falling and still making sounds (“like fast flowing streams but ‘crunchier'”) four days later. That pile of fallen rocks is roughly 6.5 miles long and 1 mile wide. And, some of the rock was pushed at least 300 ft (~100 m) uphill on some of the neighboring mountain slopes.

Of course, who needs pilots with video cameras? All we need is a satellite instrument known as VIIRS to see it. (That, and a couple of cloud-free days.) First, lets take a look at an ultra-high-resolution Landsat image (that I stole from the National Park Service website and annotated):

Glacier Bay National Park as viewed by Landsat (courtesy US National Park Service)

Glacier Bay National Park as viewed by Landsat (courtesy US National Park Service)

Of course, you’ll want to click on that image to see it at full resolution. The names I’ve added to the image are the names of the major (and a few minor) glaciers in the park. The one to take note of is Lamplugh. Study it’s location, then see if you can find it in this VIIRS True Color image from 9 June 2016:

VIIRS True Color RGB composite image of channels M-3, M-4 and M-5 (20:31 UTC 9 June 2016), zoomed in at 200%.

VIIRS True Color RGB composite image of channels M-3, M-4 and M-5 (20:31 UTC 9 June 2016), zoomed in at 200%.

Anything? No? Well, how about in this image from 7 July 2016:

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:42 UTC 7 July 2016)

VIIRS True Color RGB composite of channels M-3, M-4 and M-5 (21:42 UTC 7 July 2016), zoomed in at 200%

I see it! If you don’t, try this “Before/After” image overlay, by dragging your mouse from side to side:

afterbefore

That dark gray area in the image from 7 July 2016 that the arrow is pointing to is the Lamplugh Glacier landslide! If the “Before/After” overlay doesn’t work, try refreshing the page, or look at this animated GIF:

Animation of VIIRS True Color images highlighting the Lamplugh Glacier landslide

Animation of VIIRS True Color images highlighting the Lamplugh Glacier landslide

Of course, with True Color images, it can be hard to tell what is cloud and what is snow (or glacier) and with VIIRS you’re limited to 750 m resolution. We can take care of those issues with the high-resolution (375 m) Natural Color images:

Animation of VIIRS Natural Color images of the Lamplugh Glacier landslide

Animation of VIIRS Natural Color images of the Lamplugh Glacier landslide

Make sure you click on it to see the full resolution. If you want to really zoom in, here is the high-resolution visible channel (I-1) imagery of the event:

Animation of VIIRS high-resolution visible images of the Lamplugh Glacier landslide

Animation of VIIRS high-resolution visible images of the Lamplugh Glacier landslide

You don’t even need an arrow to point it out. Plus, if you look closely, I think you can even see some of the dust coming from the slide.

That’s what 120 million metric tons of rock falling off the side of a mountain looks like, according to VIIRS!

UHF/VHF

Take a second to think about what would happen if Florida was hit by four hurricanes in one month.

Would the news media get talking heads from both sides to argue whether or not global warming is real by yelling at each other until they have to cut to a commercial? Would Jim Cantore lose his mind and say “I don’t need to keep standing out here in this stuff- I quit!”? Would we all lose our minds? Would our economy collapse? (1: yes. 2: every man has his breaking point. 3: maybe not “all”. 4: everybody panic! AHHH!)

It doesn’t have to just be Florida. It could be four tropical cyclones making landfall anywhere in the CONUS (and, maybe, Hawaii) in a 1-month period. The impact would be massive. But, what about Alaska?

Of course, Alaska doesn’t get “tropical cyclones” – it’s too far from the tropics. But, Alaska does get monster storms that are just as strong that may be the remnants of tropical cyclones that undergo “extratropical transition“. Or, they may be mid-latitude cyclones or “Polar lows” that undergo rapid cyclogenesis. When they are as strong as a hurricane, forecasters call them “hurricance force” (HF) lows. And guess what? Alaska has been hit by four HF lows in a 1-month period (12 December 2015 – 6 January 2016).

With very-many HF lows, some of which were ultra-strong, we might call them VHF or UHF lows. (Although, we must be careful not to confuse them with the old VHF and UHF TV channels, or the Weird Al movie.) In that case, let’s just refer to them as HF, shall we?

The first of these HF storms was a doozy – tying the record for lowest pressure ever in the North Pacific along with the remnants of Typhoon Nuri. Peak winds with system reached 122 mph (106 kt; 196 k hr-1; 54 m s-1) in Adak, which is equivalent to a Category 2 hurricane!

Since Alaska is far enough north, polar orbiting satellites like Suomi-NPP provide more than 2 overpasses per day. Here’s an animation from the VIIRS Day/Night Band, one of the instruments on Suomi-NPP:

Animation of VIIRS Day/Night Band images of the Aleutian Islands (12-14 December 2015)

Animation of VIIRS Day/Night Band images of the Aleutian Islands (12-14 December 2015).

It’s almost like a geostationary satellite! (Not quite, as I’ll show later.) This is the view you get with just 4 images per day. (The further north you go, the more passes you get. The Interior of Alaska gets 6-8 passes, while the North Pole itself gets all 15.) Seeing the system wrap up into a symmetric circulation would be a thing of beauty, if it weren’t so destructive. Keep in mind that places like Adak are remote enough as it is. When a storm like this comes along, they are completely isolated from the rest of Alaska!

Here’s the same animation for the high-resolution longwave infrared (IR) band (I-5, 11.5 µm):

Animation of VIIRS I-5 images of the Aleutian Islands (12-14 December 2015)

Animation of VIIRS I-5 images of the Aleutian Islands (12-14 December 2015).

I’ve mentioned Himawari before on this blog. Well, Himawari’s field of view includes the Aleutian Islands. Would you like to see how this storm evolved with 10 minute temporal resolution? Of course you would.

Here is CIRA’s Himawari Geocolor product for this storm:

Here is a loop of the full disk RGB Airmass product applied to Himawari. Look for the storm moving northeast from Japan and then rapidly wrapping up near the edge of the Earth. This is an example of something you can’t do with VIIRS, because VIIRS does not have any detectors sensitive to the 6-7 µm water vapor absorption band, which is one of the components of the RGB Airmass product. The RGB Airmass and Geocolor products are very popular with forecasters, but they’re too complicated to go into here. You can read up on the RGB Airmass product here, or visit my collegue D. Bikos’ blog to find out more about this storm and these products.

You might be asking how we know what the central pressure was in this storm. After all, there aren’t many weather observation sites in this part of the world. The truth is that it was estimated (in the same way the remnants of Typhoon Nuri were estimated) using the methodology outlined in this paper. I’d recommend reading that paper, since it’s how places like the Ocean Prediction Center at the National Weather Service estimate mid-latitude storm intensity when there are no surface observations. I’ll be using their terminology for the rest of this discussion.

Less than 1 week after the first HF storm hit the Aleutians, a second one hit. Unfortunately, this storm underwent rapid intensification in the ~12 hour period where there were no VIIRS passes. Here’s what Storm #2 looked like in the longwave IR according to Himawari. And here’s what it looked like at full maturity according to VIIRS:

VIIRS DNB image (23:17 UTC 18 December 2015)

VIIRS DNB image (23:17 UTC 18 December 2015).

VIIRS I-5 image (23:17 UTC 18 December 2015)

VIIRS I-5 image (23:17 UTC 18 December 2015).

Notice that this storm is much more elongated than the first one. Winds with this one were only in the 60-80 mph range, making it a weak Category 1 HF low.

Storm #3 hit southwest Alaska just before New Year’s, right at the same time the Midwest was flooding. This one brought 90 mph winds, making it a strong Category 1 HF low. This one is bit difficult to identify in the Day/Night Band. I mean, how many different swirls can you see in this image?

VIIRS DNB image (13:00 UTC 30 December 2015)

VIIRS DNB image (13:00 UTC 30 December 2015).

(NOTE: This was the only storm of the 4 to happen when there was moonlight available to the DNB, which is why the clouds appear so bright. The rest of the storms were illuminated by the sun during the short days and by airglow during the long nights.) The one to focus on is the one of the three big swirls closest to the center of the image (just above and right of center). It shows up a little better in the IR:

VIIRS I-5 image (13:00 UTC 30 December 2015)

VIIRS I-5 image (13:00 UTC 30 December 2015).

The colder (brighter/colored) cloud tops are the clue that this is the strongest storm, since all three have similar brightness (reflectivity) in the Day/Night Band. If you look close, you’ll also notice that this storm was peaking in intensity (reaching mature stage) right as it was making landfall along the southwest coast of Alaska.

Storm #4 hit the Aleutians on 6-7 January 2016 (one week later), and was another symmetric/circular circulation. This storm brought winds of 94 mph (2 mph short of Category 2!) The Ocean Prediction Center made this animation of its development as seen by the Himawari RGB Airmass product. Or, if you prefer the Geocolor view, here’s Storm #4 reaching mature stage. But, this is a VIIRS blog. So, what did VIIRS see? The same storm at higher spatial resolution and lower temporal resolution:

Animation of VIIRS DNB images of the Aleutian Islands (6-7 January 2016)

Animation of VIIRS DNB images of the Aleutian Islands (6-7 January 2016).

Animation of VIIRS I-5 images of the Aleutian Islands (6-7 January 2016)

Animation of VIIRS I-5 images of the Aleutian Islands (6-7 January 2016).

This storm elongated as it filled in and then retrograded to the west over Siberia. There aren’t many hurricanes that do that after heading northeast!

So, there you have it: 4 HF lows hitting Alaska in less than 1 month, with no reports of fatalities (that I could find) and only some structural damage. Think that would happen in Florida?

The Aurora Seen Around The World

Think back to St. Patrick’s Day. Do you remember what you were doing? Hopefully you were wearing something green. And, hopefully, you didn’t leave anything green in the gutter behind the bar (e.g. undigested lunch or beverages or a mixture of the two). If you did, we don’t want to hear about it. It’s unpleasant enough that you had to read that and have that image in your mind. Apologies if you are eating.

If your mind was lucid enough that night, or the following night, did you remember to look up to the northern sky? Or, right above you, if you live far enough north? (Swap “north” for “south” if you live in the Southern Hemisphere. Everything is backwards there.) Was it a clear night?

If you answered “no” to the first two questions and “yes” to the third question, you missed out on an opportunity to see something green in the sky – one of the great atmospheric wonders of the world: the aurora. If you answered “yes” then “no”, tough luck. The lower atmosphere does not always cooperate with the upper atmosphere. If you answered “yes” on everything and still didn’t see the aurora, then you need to move closer to your nearest magnetic pole. Or, away from light pollution. (Although, truth be told, it is possible to live too far north or south to see the aurora. But, not many people live there. Those who do rarely have to worry about light pollution.)

If you forgot to look up at the night sky on 17-18 March 2015, you have no excuse. The media was hyping the heck out of it. That link is just one example of media predictions of the aurora being visible as far south as Dallas and Atlanta. While I couldn’t find any photographic evidence that that actually happened, there were people as far south as Ohio, Pennsylvania and New Jersey that saw the aurora. In the other hemisphere – the backwards, upside-down one – the aurora was seen as far north as Australia and New Zealand, which is a relatively rare occurrence for them. And there are no shortage of pictures and videos if you want proof: pictures, more pictures, even more pictures, video and pictures, video, and a couple more short videos here, here and here.

Now, we already know that VIIRS can see the aurora. We’ve covered both the aurora borealis and aurora australis before. This time, we’ll take a look at both at the same time – not literally, of course! – since the Day/Night Band viewed the aurora (borealis and australis) on every orbit for an entire 24 hour period, during which time it covered every part of the Earth. So, follow along as VIIRS circled the globe in every sense of the word during this event.

First, we start with the aurora australis over the South Pacific, south of Pitcairn Island, at 10:15 UTC on 17 March 2015. We then proceed westward, ending over the South Pacific, south of Easter Island at 08:16 UTC on 18 March 2015. Click on each image in the gallery to see the medium resolution version. Above each of those images is a link containing the dimensions of the high resolution version. Click on that to see the full resolution.

Notice how much variability there is in the spatial extent and shape of the aurora from one orbit to the next. Everything is represented, from diffuse splotches to well-defined ribbons (which are technical terms, of course, wink, wink). You can see just how close the aurora was to being directly over Australia and New Zealand. And, if you looked at the high resolution versions of all the images (which are very large), you might have seen this:

VIIRS DNB image of the aurora australis, 18:39 UTC 17 March 2015

VIIRS DNB image of the aurora australis, 18:39 UTC 17 March 2015.

Just below center, the aurora is illuminating gravity waves forced by Heard Island. The aurora is also directly overhead of it’s “twin”, “Desolation Island” (aka Îles Kerguelen, upper-right corner right at the edge of the swath), although it looks too cloudy for the scientists and penguins living there to see it. (How many more Remote Islands can I mention that I’ve featured before?)

Now, I’m a sucker for animations, so I thought I’d combine all of these images into one and here it is (you can click on it to see the full-resolution version):

Animation of VIIRS DNB images of the aurora australis, 17-18 March 2015

Animation of VIIRS DNB images of the aurora australis, 17-18 March 2015.

Here, it is easier to notice that the aurora is much further north (away from the South Pole) near Australia and New Zealand and further south (closer to the pole) near South America. This is proof that the geomagnetic pole does not coincide with the geographic pole. This also puts the southern tips of Chile and Argentina at a disadvantage when it comes to seeing the aurora, compared to Australia and New Zealand.

Now, repeat everything for the aurora borealis – beginning over central Canada (07:57 UTC 17 March 2015) and ending there ~24 hours later (07:40 UTC 18 March 2015):

Basically, if you were anywhere in Siberia where there were no clouds, you could have seen the aurora. (For those who are not impressed, Siberia is a big area.) Did you see the aurora directly over North Dakota? (I showed a video of that above.) Did you notice it was mostly south of Anchorage, Alaska? (Typically, it’s over Fairbanks.) It was pretty close to Moscow and Scotland, also. But, what about the sightings in Ohio, New Jersey, and Germany? It doesn’t look like the aurora was close to those places…

For one, the aurora doesn’t have to be overhead to see it. Depending on the circumstances (e.g. auroral activity, atmospheric visibility, light pollution, etc.), you can be 5 degrees or more of latitude away and it will be visible. Second, these are single snapshots of an aurora that is constantly moving. (We already know the aurora can move pretty fast.) It may have been closer to these places when VIIRS wasn’t there to see it.

Lastly, here’s an animation of the above images, moving in the proper clockwise direction, unlike in that backwards, upside-down hemisphere:

Animation of VIIRS DNB images of the aurora borealis, 17-18 March 2015

Animation of VIIRS DNB images of the aurora borealis, 17-18 March 2015.

If you want to know more about what causes the aurora, watch this video. If you want to know why auroras appear in different colors, read this. If you want to know why aboriginal Australians viewed the aurora as an omen of fire, blood, death and punishment, and why various Native American tribes viewed the aurora as dancing spirits that were happy, well, you have a lot more reading to do: link, link and link.

Investigating Mysteries of the Deep, Dark Night

Conspiracy theorists will tell you that conspiracies exist everywhere; that they’re part of daily life; and that most people are ignorant of all the attempts by various governments around the world to covertly control every facet of your life. Only they know the truth. But, that’s just what they want you to believe! Conspiracy theorists are simply manipulating you in order to control you and create a New World Order! Wake up!

Full disclosure: I am subsidized by the U.S. government to inform people of the capabilities and uses of the satellite instrument called VIIRS and today I’ll show you how that satellite instrument can help separate fact from fiction when it comes to the latest conspiracy theory. (Of course, working for the government means I could be part of the conspiracy!  Mwa ha ha!)

During the last week of August 2014, I was sent this link to a story from a pilot/photographer who captured “the creepiest thing so far” in his long flying career. I’ll quote his initial post again in its entirety here (for those of you too lazy to click on the links):

Last night [24 August 2014] over the Pacific Ocean, somewhere South of the Russian peninsula Kamchatka I experienced the creepiest thing so far in my flying career. After about 5 hours in flight we left Japan long time behind us and were cruising at a comfortable 34.000ft with about 4,5 hours to go towards Alaska.
We heard via the radio about earthquakes in Iceland, Chile and San Francisco, and since there were a few volcanos on our route that might or might not be going off during our flight, we double checked with dispatch if there was any new activity on our route after we departed from Hongkong.

Then, very far in the distance ahead of us, just over the horizon an intense lightflash shot up from the ground. It looked like a lightning bolt, but way more intense and directed vertically up in the air. I have never seen anything like this, and there were no flashes before or after this single explosion of light.

Since there were no thunderstorms on our route or weather-radar, we kept a close lookout for possible storms that might be hiding from our radar and might cause some problems later on.

I decided to try and take some pictures of the night sky and the strange green glow that was all over the Northern Hemisphere. I think it was sort of a Northern Lights but it was much more dispersed, never seen anything like this before either. About 20 minutes later in flight I noticed a deep red/orange glow appearing ahead of us, and this was a bit strange since there was supposed to be nothing but endless ocean below us for hundreds of miles around us. A distant city or group of typical Asian squid-fishing-boats would not make sense in this area, apart from the fact that the lights we saw were much larger in size and glowed red/orange, instead of the normal yellow and white that cities or ships would produce.

The closer we got, the more intense the glow became, illuminating the clouds and sky below us in a scary orange glow. In a part of the world where there was supposed to be nothing but water.

The only cause of this red glow that we could think of, was the explosion of a huge volcano just underneath the surface of the ocean, about 30 minutes before we overflew that exact position.

Since the nearest possible airport was at least 2 hours flying away, and the idea of flying into a highly dangerous and invisible ash-plume in the middle of the night over the vast Pacific Ocean we felt not exactly happy. Fortunately we did not encounter anything like this, but together with the very creepy unexplainable deep red/orange glow from the ocean’s surface, we felt everything but comfortable. There was also no other traffic near our position or on the same routing to confirm anything of what we saw or confirm any type of ash clouds encountered.

We reported our observations to Air Traffic Control and an investigation into what happened in this remote region of the ocean is now started.

If you go back and click on the link, you’ll see he posted several pictures of the mysterious red lights along with more detailed information about where and when this occurred. To save you some time, here is a representative picture (taken at 11:21 UTC 24 August 2014). And here is the location of the aircraft when they saw the lights.

There are three parts to this story: 1) the bright flash of light that looked like lightning coming up from the surface; 2) the aurora-like features in the sky; and 3) the red and orange lights from the clouds below that appeared to be larger than ordinary ship lights.

Since the story was first posted, people from all over commented on what they thought the lights were and the pilot has been updating his webpage to cover the most common and/or most likely explanations. The media picked up the story and used it to claim the world was coming to an end. Existing theories range from UFOs (unidentified flying objects) and UUSOs (unidentified under-surface objects) operated by space aliens to covert military operations to spontaneously-combusting methane bubbling out of the ocean to “earthquake lights“. The pilot himself initially thought it was an underwater volcanic eruption.

So, can VIIRS shed light on what was going on? Yes – at least, on #2 and #3. VIIRS passed over the area in question at 15:35 UTC on 24 August, which is about 4 hours after the pilot took his pictures. This means VIIRS can’t say anything about the lightning-like flash that was observed. So #1 is unexplained.

As for #2 – the aurora-like features in the sky – those are simply airglow waves. We’ve discussed airglow and airglow waves before here and here.

Now, onto #3 where VIIRS is most informative: the mysterious surface lights. I mentioned the VIIRS overpass at 15:35 UTC on 24 August. Here’s what the Day/Night Band (DNB) saw:

VIIRS Day/Night Band image from 15:35 UTC 24 August 2014.

VIIRS Day/Night Band image from 15:35 UTC 24 August 2014.

Look at 47.5°N latitude and 159°E longitude. (You can click on the image, then on the “4329 x 2342″ link below the banner to see the full resolution image.) Those are the lights the pilot saw! (Note also that this night was near new moon, so any illumination of the clouds in that area comes from airglow. Light in the northeast corner of the image is twilight from the approaching sunrise.)

Now, VIIRS also has bands in the short-, mid- and long-wave infrared (IR). Surely, they must have seen the heat signature put out by a volcanic eruption, right? Not necessarily. The pilot’s photographs clearly show the lights shining through a layer of clouds, and it doesn’t take much cloud cover to obscure heat signatures at these wavelengths. But, for completeness, here are the observed brightness temperatures at 3.7 µm (channel M-12) and 10.7 µm (channel M-15):

VIIRS M-12 image from 15:35 UTC 24 August 2014

VIIRS M-12 image from 15:35 UTC 24 August 2014

VIIRS M-15 image from 15:35 UTC 24 August 2014

VIIRS M-15 image from 15:35 UTC 24 August 2014

I don’t see any hotspots in either of those images near the location of the lights. But, as I said, this doesn’t disprove the presence of flaming methane or volcanic activity because of possible obscuration by clouds. (Note that the clouds are easier to see in the DNB image than either of the IR images because there is no thermal contrast between the clouds and the open ocean for the IR images to take advantage of. There is, however, reflection of airglow light available to provide contrast in the DNB.)

What about the night before? The night after? Were the lights still there?

Here’s the DNB image from 15:54 UTC 23 August 2014 (aka the night before):

VIIRS DNB image from 15:54 UTC 23 August 2014

VIIRS DNB image from 15:54 UTC 23 August 2014

The light is there in pretty much the same place, although it looks like one big circle instead of a number of smaller lights. What is going on? Once again, it’s clouds. This time, the longwave IR shows we have optically thicker and/or an additional layer of high clouds over the lights:

VIIRS M-15 image from 15:54 UTC 23 August 2014

VIIRS M-15 image from 15:54 UTC 23 August 2014

Optically thicker clouds scatter and diffuse the light more, and what you are seeing in the DNB image is the area of clouds surrounding the light source that scatter the light to the satellite. See how clouds scatter the city lights of the U.S. Midwest in this comparison between the DNB and M-15 from 07:42 UTC 2 September 2014:

(You may have to refresh the page if this before/after image trick doesn’t work.)

It’s not that Chicago, Illinois and Gary, Indiana extend that far out into Lake Michigan or that the map is not plotting correctly. It’s that the optically thicker clouds over the southern end of the lake scatter more of the light back to the satellite (and over a larger area than the lights themselves), making it appear that the light is coming from over the lake.

Similarly, scattering in the clouds makes the individual “mystery lights” over the Pacific Ocean appear to be one large area of light, instead of a number of smaller lights.

How do the lights look on 25 August 2014 (aka the night after)? Here’s the DNB image:

VIIRS DNB image from 15:18 UTC 25 August 2014

VIIRS DNB image from 15:18 UTC 25 August 2014

Did you notice that? The lights aren’t in the same place as before. They moved. In fact, I tracked these lights in the DNB for two weeks. And I got this result:

Do volcanoes move around from day to day? I think we can safely say the pilot was not observing a volcanic eruption.

Now, I don’t know much about spontaneously combusting methane bubbles in the ocean, but I doubt they are this frequent. The pilot found another pilot’s report of methane burning over the ocean from 9 April 1984 (which also occurred during a flight from Japan to Alaska) but, that was during the day and it was the resulting cloud that was spotted, not the actual flames. There is no evidence of clouds being produced by these lights over this two week period. There also isn’t much evidence from seismic activity over this period to justify earthquake lights.

Another theory put forth was meteorites but, again, it seems highly improbable that VIIRS would be capturing this many meteorites hitting this localized area of the Pacific Ocean every night for two weeks. Plus, they would have to be pretty large meteors to appear as large as these lights.

Unless you believe in UFOs (or UUSOs), that leaves only one question: why were the pilots of this flight so quick to dismiss ships? The DNB has seen ships on the ocean before, and they look a lot like this. (You can find examples of individual boats observed by the DNB here and an example of larger squid boat operations here.)

It is true that most squid boats use white or greenish light and the pictures clearly show red and orange lights coming up through the clouds. But military ships are known to use red lights at night, at least, according to Yahoo! Answers.

If it looks like a fleet of ships and moves like a fleet of ships, I’m guessing it’s a fleet of ships. Unless, of course, it’s a gam of sharks with freakin’ laser beams attached to their heads.