Take a second to think about what would happen if Florida was hit by four hurricanes in one month.

Would the news media get talking heads from both sides to argue whether or not global warming is real by yelling at each other until they have to cut to a commercial? Would Jim Cantore lose his mind and say “I don’t need to keep standing out here in this stuff- I quit!”? Would we all lose our minds? Would our economy collapse? (1: yes. 2: every man has his breaking point. 3: maybe not “all”. 4: everybody panic! AHHH!)

It doesn’t have to just be Florida. It could be four tropical cyclones making landfall anywhere in the CONUS (and, maybe, Hawaii) in a 1-month period. The impact would be massive. But, what about Alaska?

Of course, Alaska doesn’t get “tropical cyclones” – it’s too far from the tropics. But, Alaska does get monster storms that are just as strong that may be the remnants of tropical cyclones that undergo “extratropical transition“. Or, they may be mid-latitude cyclones or “Polar lows” that undergo rapid cyclogenesis. When they are as strong as a hurricane, forecasters call them “hurricance force” (HF) lows. And guess what? Alaska has been hit by four HF lows in a 1-month period (12 December 2015 – 6 January 2016).

With very-many HF lows, some of which were ultra-strong, we might call them VHF or UHF lows. (Although, we must be careful not to confuse them with the old VHF and UHF TV channels, or the Weird Al movie.) In that case, let’s just refer to them as HF, shall we?

The first of these HF storms was a doozy – tying the record for lowest pressure ever in the North Pacific along with the remnants of Typhoon Nuri. Peak winds with system reached 122 mph (106 kt; 196 k hr-1; 54 m s-1) in Adak, which is equivalent to a Category 2 hurricane!

Since Alaska is far enough north, polar orbiting satellites like Suomi-NPP provide more than 2 overpasses per day. Here’s an animation from the VIIRS Day/Night Band, one of the instruments on Suomi-NPP:

Animation of VIIRS Day/Night Band images of the Aleutian Islands (12-14 December 2015)

Animation of VIIRS Day/Night Band images of the Aleutian Islands (12-14 December 2015).

It’s almost like a geostationary satellite! (Not quite, as I’ll show later.) This is the view you get with just 4 images per day. (The further north you go, the more passes you get. The Interior of Alaska gets 6-8 passes, while the North Pole itself gets all 15.) Seeing the system wrap up into a symmetric circulation would be a thing of beauty, if it weren’t so destructive. Keep in mind that places like Adak are remote enough as it is. When a storm like this comes along, they are completely isolated from the rest of Alaska!

Here’s the same animation for the high-resolution longwave infrared (IR) band (I-5, 11.5 µm):

Animation of VIIRS I-5 images of the Aleutian Islands (12-14 December 2015)

Animation of VIIRS I-5 images of the Aleutian Islands (12-14 December 2015).

I’ve mentioned Himawari before on this blog. Well, Himawari’s field of view includes the Aleutian Islands. Would you like to see how this storm evolved with 10 minute temporal resolution? Of course you would.

Here is CIRA’s Himawari Geocolor product for this storm:

Here is a loop of the full disk RGB Airmass product applied to Himawari. Look for the storm moving northeast from Japan and then rapidly wrapping up near the edge of the Earth. This is an example of something you can’t do with VIIRS, because VIIRS does not have any detectors sensitive to the 6-7 µm water vapor absorption band, which is one of the components of the RGB Airmass product. The RGB Airmass and Geocolor products are very popular with forecasters, but they’re too complicated to go into here. You can read up on the RGB Airmass product here, or visit my collegue D. Bikos’ blog to find out more about this storm and these products.

You might be asking how we know what the central pressure was in this storm. After all, there aren’t many weather observation sites in this part of the world. The truth is that it was estimated (in the same way the remnants of Typhoon Nuri were estimated) using the methodology outlined in this paper. I’d recommend reading that paper, since it’s how places like the Ocean Prediction Center at the National Weather Service estimate mid-latitude storm intensity when there are no surface observations. I’ll be using their terminology for the rest of this discussion.

Less than 1 week after the first HF storm hit the Aleutians, a second one hit. Unfortunately, this storm underwent rapid intensification in the ~12 hour period where there were no VIIRS passes. Here’s what Storm #2 looked like in the longwave IR according to Himawari. And here’s what it looked like at full maturity according to VIIRS:

VIIRS DNB image (23:17 UTC 18 December 2015)

VIIRS DNB image (23:17 UTC 18 December 2015).

VIIRS I-5 image (23:17 UTC 18 December 2015)

VIIRS I-5 image (23:17 UTC 18 December 2015).

Notice that this storm is much more elongated than the first one. Winds with this one were only in the 60-80 mph range, making it a weak Category 1 HF low.

Storm #3 hit southwest Alaska just before New Year’s, right at the same time the Midwest was flooding. This one brought 90 mph winds, making it a strong Category 1 HF low. This one is bit difficult to identify in the Day/Night Band. I mean, how many different swirls can you see in this image?

VIIRS DNB image (13:00 UTC 30 December 2015)

VIIRS DNB image (13:00 UTC 30 December 2015).

(NOTE: This was the only storm of the 4 to happen when there was moonlight available to the DNB, which is why the clouds appear so bright. The rest of the storms were illuminated by the sun during the short days and by airglow during the long nights.) The one to focus on is the one of the three big swirls closest to the center of the image (just above and right of center). It shows up a little better in the IR:

VIIRS I-5 image (13:00 UTC 30 December 2015)

VIIRS I-5 image (13:00 UTC 30 December 2015).

The colder (brighter/colored) cloud tops are the clue that this is the strongest storm, since all three have similar brightness (reflectivity) in the Day/Night Band. If you look close, you’ll also notice that this storm was peaking in intensity (reaching mature stage) right as it was making landfall along the southwest coast of Alaska.

Storm #4 hit the Aleutians on 6-7 January 2016 (one week later), and was another symmetric/circular circulation. This storm brought winds of 94 mph (2 mph short of Category 2!) The Ocean Prediction Center made this animation of its development as seen by the Himawari RGB Airmass product. Or, if you prefer the Geocolor view, here’s Storm #4 reaching mature stage. But, this is a VIIRS blog. So, what did VIIRS see? The same storm at higher spatial resolution and lower temporal resolution:

Animation of VIIRS DNB images of the Aleutian Islands (6-7 January 2016)

Animation of VIIRS DNB images of the Aleutian Islands (6-7 January 2016).

Animation of VIIRS I-5 images of the Aleutian Islands (6-7 January 2016)

Animation of VIIRS I-5 images of the Aleutian Islands (6-7 January 2016).

This storm elongated as it filled in and then retrograded to the west over Siberia. There aren’t many hurricanes that do that after heading northeast!

So, there you have it: 4 HF lows hitting Alaska in less than 1 month, with no reports of fatalities (that I could find) and only some structural damage. Think that would happen in Florida?

The Great Flood of 2015

As we begin 2016, struggling to get back into the swing of things at work and vowing not to overeat or over-drink ever again, it’s appropriate to bid farewell to 2015 – not just for all the weird weather events that we covered on this blog over the year, but also for the weird, wacky weather that ruined many people’s holidays. I’m not sure of the exact number, but this article mentions 43 weather-related fatalities in the U.S. in the second half of December. Let’s see, between 23-30 December 2015, there were:

–    77 tornadoes (including 38 on the 23rd and 18 on the 27th);

–    Parts of New Mexico and west Texas got over 2 ft (60 cm) of snow from a blizzard that created drifts upwards of 10 ft (3 m) on the 27th;

–    Record warmth was observed in the Northeast before and during Christmas and the site of Snowvember went until 18 December before the first measurable snow of the season;

–    Chicago received almost 2″ of sleet (48 mm) on the 29th when any accumulation of sleet is quite rare;

–    And – what will be our focus here – St. Louis received over 3-months-worth of precipitation in three days (26-28 December), from a storm that flooded a large area of Missouri, Illinois and Arkansas. In fact, the St. Louis area had the wettest December on record, right after having the 7th wettest November on record, which put it over the top for wettest calendar year on record. Current estimates place 31 fatalities at the hands of this flooding, which caused the Mississippi River to reach its highest crest since the Great Flood of 1993.

What kind of satellite imager would VIIRS be if it couldn’t detect massive flooding on the largest river in North America? (Hint: not a very useful one. Or, a less useful one, if you’re not into hyperbole.) Hey, if it works in Paraguay, it works here – or it isn’t science!

I shouldn’t have to prove that the Natural Color RGB is useful for detecting flooding (since I have done it many, many, many, many, many, many times before), so we can go right to the imagery. Here’s what the Midwest looked like on 13 November 2015 – before the flooding began:

VIIRS Natural Color RGB composite of channels I-1, I-2, and I-3 (19:02 UTC 13 November 2015)

VIIRS Natural Color RGB composite of channels I-1, I-2, and I-3 (19:02 UTC 13 November 2015).

And, here’s what the same area looked like on New Year’s Day:

VIIRS Natural Color RGB composite of channels I-1, I-2, and I-3 (18:45 UTC 1 January 2016)

VIIRS Natural Color RGB composite of channels I-1, I-2, and I-3 (18:45 UTC 1 January 2016).

Notice anything different? This is actually the reverse of the last time we played “Spot the Differences” – we’re looking for where water is now that wasn’t there before, instead of searching for bare ground that used to have water on it.

Of course, the first thing to notice is the large area of snow covering Iowa, Nebraska and northwest Missouri that wasn’t there back in November. Next, we have more clouds over the southern and northern parts of the scene. Those are the easy differences to spot. Now look for the Missouri River in eastern Missouri, the Arkansas River in Arkansas, the Illinois River in Illinois, the Indiana River in Indiana… Wait! There is no Indiana River. I fooled you! (Although, there are rivers in Indiana that are flooded.)

The most significant areas of flooding are in northeast Arkansas and the “Bootheel” of Missouri (which I think looks more like a toe or a claw than a heel), and the Mississippi River along the border of Tennessee shows signs of significant flooding as well. (If only it were the Tennessee River!) Here’s a before and after comparison, zoomed in on that part of the region:

13 November 20151 January 2016

You may have to refresh the page to get this to work right.

There’s a lot more water in the image from 1 January 2016 than there was back in November 2015! Since we are looking at the high-resolution Imagery bands, our quick-and-dirty estimate of water volumes still applies like it did for California’s drought: multiply the number of water-filled pixels by the depth (in feet) of the flooding, and by 100 acres to get the floodwater volume in acre-feet. Then multiply that by 325,852 gallons per acre-foot to get the volume in gallons. Even though this estimate is not exact, you can see how the gallons of floodwater add up. And, if you live in California, you can dream of seeing that much water! If you live in Missouri and can think of an economical way to transport this water to California, you’d be rich.

Now, see how many other areas of flooding you can find when you compare the two images in animation form:

Animation of VIIRS Natural Color RGB images from 13 November 2015 and 1 January 2016

Click to view an animation of VIIRS Natural Color RGB images from 13 November 2015 and 1 January 2016.

You will have to click on the image to see the animation. You can click on the image again to see it in full resolution (with most web browsers).

One thing you might notice is that some of the floodwaters appear more blue than black. Take a look at the Arkansas River in particular. As we discussed with the Rio Paraná and Rio Paraguay, this is due to the increased sediment that increases the albedo of the water at visible wavelengths. In other places the floodwaters are shallow enough that VIIRS can see the ground underneath – again making the water appear more blue in this RGB composite.

Wouldn’t it be nice to identify areas of flooding without having to play a “Spot the Differences” game? Maybe something that would automatically detect flooded areas? Well, you’re in luck:

VIIRS-based Flood Map (18:48 UTC 1 January 2016)

VIIRS-based Flood Map (18:48 UTC 1 January 2016). Image courtesy S. Li (GMU).

This image is an example of the VIIRS-based flood detection product being developed by the JPSS Program’s River Ice and Flooding Initiative. This initiative is a collaboration between university-based researchers and NOAA forecasters who use products like these to help save lives. Thanks to S. Li for developing the product for and providing the image!

If you want to know what the flooding looks like from the ground, here is a nice video. Or, you can look at some pictures here.

As a final note, the American Meteorological Society is holding its Annual Meeting in New Orleans next week. This event will be held at the Convention Center – right on the bank of the Mississippi River – right at the time the river is forecast to crest from these floodwaters. The world’s largest gathering of weather enthusiasts might be directly impacted by this flood. Let’s hope no one has to swim their way to any poster sessions or keynote speeches! (I don’t think local residents want to deal with any flooding, either.)