Tag Archives: moonglint

Optical Ghosts

It’s not everyday that one comes across something that is truly surprising. But, here’s something I recently came across that surprised me: a website on ghosts, angels and demons with useful scientific information. Of relevance here is the section on lens flare and ghosting. Although, maybe it shouldn’t be surprising. If you’re looking for “real” ghosts, you have to be able to spot the “fake” ones.

Simply put, lens ghosting (or optical ghosting) is a consequence of the fact that no camera lens in existence perfectly transmits 100% of the light incident upon it. Some of the light is reflected from the back of lens to the front, and then back again, as in the first diagram on this website. When the source of this light is bright enough, the component of this light that bounces around due to internal reflections within the lens may be as bright or brighter than the rest of the incoming light and will show up on the film (for you old fogies) or recorded by the array of detector elements that convert light into an electric signal (pretty much any camera purchased after 2004). That leads to the phenomena known as “flaring” and “ghosting”.

We’ve all seen pictures or movies that contain these artifacts. Here’s an example of flaring. Here’s an example of ghosting. And here’s both in the same image:

Photo credit: Nasim Mansurov (photographylife.com)

Photo credit: Nasim Mansurov (photographylife.com)

Professional photographers use flaring and ghosting to their advantage. Amateurs wonder why it ruined their picture.

In the particular case of “ghosts”, the light you see often takes on the shape of the aperture, which gives you polygonal or circular shapes like these:

Examples of lens ghosts. Pictures courtesy Angels&Ghosts.com.

Examples of lens ghosts. Pictures courtesy Angels&Ghosts.com.

I hate to be a stickler but those are pentagons, not hexagons. (Keep on your toes!) Flaring and ghosting is so prevalent in cameras of all kinds that animated movies replicate it in order to look “more real.” And, they are two examples of the many artifacts produced by cameras. (Take a look at the differences between CCD and CMOS detectors, as an example of others.)

Why bring this up on a blog about a weather satellite? Because the VIIRS Day/Night Band is, in a manner of speaking, just a really high-powered CCD camera. It, too, is subject to ghosts. (More so than other VIIRS bands because of its high sensitivity to low levels of light.)

Before we get to that, see if you notice anything unusual about this Day/Night Band image:

VIIRS Day/Night Band image (00:42 UTC 9 February 2015)

VIIRS Day/Night Band image (00:42 UTC 9 February 2015).

Those with photographic memories will recognize this image from an earlier post about the N-ICE field campaign in 2015 (which I hid in one of the animations). See that row of 6 bright lights north of Svalbard? Those aren’t boats and they’re not optical ghosts – they are 6 images of the same satellite (using the more liberal definition of satellite: 2a).

Don’t believe me? Here’s the explanation: VIIRS is on a satellite that orbits the Earth at about 835 km. That means two things: 1) there are plenty of satellites (or bits of space junk) that orbit at lower altitudes; and 2) every time a satellite crosses over to the nighttime side of the terminator, there is a period of time that the object is still illuminated by the sun before it passes behind the Earth’s shadow. And, there’s a third thing to consider: lower orbiting objects travel faster than higher orbiting objects. If one of these lower orbiting satellites should pass through the field-of-view of VIIRS while it is still illuminated by the sun, it can reflect light back to VIIRS, where the Day/Night Band can detect it. It’s a form of glint, like sunglint or moonglint. If it moves only slightly faster than VIIRS, it will be in the field-of-view for multiple scans, like in the image above.

It happened again in the same area 4 days later, only with 5 bright spots this time:

VIIRS Day/Night Band image (06:10 UTC 13 February 2015)

VIIRS Day/Night Band image (06:10 UTC 13 February 2015).

With all the striping that is present in the above image, you can clearly see the outline of each VIIRS scan. Note the relative position of the bright light in each scan in which it is imaged. See how it moves in the along-track dimension from one edge of the scan to the other? (The along-track dimension is basically perpendicular to the scan lines.)

Here are the two previous images zoomed in at 400%:

VIIRS Day/Night Band image (00:42 UTC 9 February 2015)

VIIRS Day/Night Band image (00:42 UTC 9 February 2015) zoomed in at 400%.

VIIRS Day/Night Band image (06:10 UTC 13 February 2016)

VIIRS Day/Night Band image (06:10 UTC 13 February 2016) zoomed in at 400%.

If this “satellite” reflects a high amount of light back to VIIRS, it can cause optical ghosts like in this image:

VIIRS Day/Night Band image (11:50 UTC 1 March 2014)

VIIRS Day/Night Band image (11:50 UTC 1 March 2014).

The ghosting is obvious. The “satellite” is less obvious, but you should be able to see the six smaller dots indicating its location. Eagle-eyed observers may click on it to see the full resolution image and note the two partial dots at either end of the row, indicating where this “satellite” was only partially within the VIIRS field-of-view. Even when the “satellite” was not in the field-of-view of VIIRS, it still caused ghosts – just like how the sun doesn’t have to be in a camera’s field-of-view to cause flares and ghosts.

The yellow line demarcates where the solar zenith angle is 108° on the Earth’s surface and the green line demarcates the lunar zenith angle of 108°. The yellow line is the limit of astronomical twilight. (Astronomical twilight exists to the right of that line.) Even though the surface is dark where this ghosting occurs (astronomical night), satellites are still illuminated by the sun (and moon) in this region. In fact, my back-of-the-envelope calculation indicates that VIIRS (at ~835 km) doesn’t pass into the Earth’s shadow until the sub-satellite point reaches a solar zenith angle of ~118°. (As an aside, the International Space Station is much lower [~400 km], so it is illuminated only to a solar zenith angle of ~110°.)

Here is the above image zoomed in at 200%:

VIIRS Day/Night Band image (11:50 UTC 1 March 2014)

VIIRS Day/Night Band image (11:50 UTC 1 March 2014) zoomed in at 200%.

Now that you’ve passed the crash course, see if you can earn your PhD. How many ghosts you can find in this image from last month? Make sure you click on it to see it in full resolution:

VIIRS Day/Night Band image (11:50 UTC 4 May 2016)

VIIRS Day/Night Band image (11:50 UTC 4 May 2016).

Where is the “satellite” in this case? What is the “real” image? And what are the “ghosts”? Are they even ghosts? As shown on the Angels & Ghosts website, objects that are out of focus are not necessarily ghosts – either “real” ghosts or “fake” ones. VIIRS is focused on the Earth’s surface (835 km away), so if another satellite were orbiting the Earth just a few kilometers lower in altitude, it would definitely appear out of focus and it would have a very similar speed to VIIRS, so it could be causing ghosts in the Day/Night Band for a long time, as you see here.

Here are all the ghosts that I found:

Close ups of the ghosts

Close ups of the ghosts from 11:50 UTC 4 May 2016 (kept at native resolution).

But, is that what we’re seeing? Are we seeing one satellite? Or is it a clutter of space junk? Did VIIRS just come close to a collision with something (because we’re seeing nearby out-of-focus objects)? Or are they optical ghosts from an object well below VIIRS, so we don’t have to worry about it? Maybe it’s a UFO! What about that!?

For once, I don’t have all the answers. But, the truth is out there! (Cue music…)

UPDATE (6/24/2016): Thanks to Dan L. for pointing out an instance of the high-resolution Landsat-8 Operational Land Imager quite clearly spotting the lower-orbiting International Space Station. With a different instrument scan strategy, it produces a different kind of artifact: tracking the ISS motion from one band to the next!

Glow-in-the-dark Water

Have you ever started looking for something, only to find something else that was more interesting than what you were originally looking for?

Back on 10 January 2014, there were widespread rumors of a significant aurora event that would be visible much further south than usual. It got a lot of people excited, even in our backyard here in Colorado. But did it happen?

If you’re curious, here is an explanation as to why the aurora forecasts were a bust. But, that’s not to say the aurora didn’t exist anywhere on the globe. The VIIRS Day/Night Band image below shows there was an aurora that made it as far south as Iceland.

VIIRS Day/Night Band image, taken 02:31 UTC 10 January 2014

VIIRS Day/Night Band image, taken 02:31 UTC 10 January 2014

What about on the next orbit? Was the aurora still there?

VIIRS Day/Night Band image, taken at 04:13 UTC 10 January 2014

VIIRS Day/Night Band image, taken at 04:13 UTC 10 January 2014

If you squint, you can maybe see it over south-central Greenland. But, hold on a minute! What’s that in the upper-left corner? Why is the water so bright off the west coast of Greenland?

This is a nighttime scene, as evidenced by the city lights over Iceland, Ireland and the UK, although you might not think that by looking at only the left side of the image. And, let me assure you, the day/night terminator never appears at this angle at this time of day in January.

CIRA researchers have recently begun producing VIIRS imagery centered on Alaska on a quasi-operational basis. About a month ago, I noticed this image that also shows “glow-in-the-dark” water, and the mystery deepened:

VIIRS Day/Night Band image, taken 11:37 UTC 9 February 2014

VIIRS Day/Night Band image, taken 11:37 UTC 9 February 2014

And again, a few days ago, the Day/Night Band captured this image:

VIIRS Day/Night Band image, taken 12:35 UTC 10 March 2014

VIIRS Day/Night Band image, taken 12:35 UTC 10 March 2014

This time, there is a pretty vivid aurora but, you can also see bright water off the southern coast of Russia.  So, what’s with water that appears to be glowing in the dark?

Is it some kind of bio-luminescent phenomenon, like milky seas? Is it some kind of radioactivity that makes everything glow, like in The Simpsons? Or an alien-UFO conspiracy to control the world’s population?

Sorry to get your hopes up, “truthers,” but it’s a pretty mundane explanation. (Either that, or I’m a member of the Illuminati. MWAH HA HA!) Have you ever looked at a body of water and saw glare from the sun? Or seen glare off of snow and ice? We call that sunglint. It is related to the Bi-directional Reflectance Distribution Function (BRDF), the mathematical way we describe that incoming light on a surface reflects more at certain angles than others. But, it’s not only sunlight that causes glint. Moonlight does it, too. (What is moonlight, if not reflected sunlight?)

Notice that the images with the glowing water were taken roughly a month apart. That’s not just a coincidence. According to this website, each of those images was taken 2-3 days after the moon reached first quarter, when the moon was 75-80% full. Why is this important? Because the phase of the moon is related to when the moon rises and sets, and this determines where the moon is in the sky when VIIRS passes overhead.

From a day or two after last quarter to new moon to a day or two after first quarter, the moon is below the horizon when VIIRS passes overhead during the nighttime overpass. (It’s above the horizon on the daytime overpass, but you can’t tell because the sun is so bright.) From just after first quarter to full moon to just after last quarter, the opposite is true – the moon is up at night and down during the day. When you get to 2-3 days after first quarter, that’s when the moon is close to the western horizon when VIIRS passes over at night. That’s why the left sides of the above images are brighter than the right sides. And, that’s also when this form of moon glint occurs, just like in this clip.

It’s not aliens or UFOs or mysterious radioactivity. It’s the geometry between the satellite, the Earth and the moon and the preferential reflection of light off of a body of water. It’s repeatable and predictable. It’s science.


UPDATE (3/14/2014): “Glow-in-the-dark” water is not confined to high latitudes like Greenland and Alaska. It happens anywhere the angle between the satellite, the Earth’s surface and the moon is in the glint range. Steve Miller (CIRA) forwarded information about a case he looked at off the coast of Louisiana. Here’s one of his images with everything labelled:

VIIRS Day/Night Band image, taken 07:41 UTC 12 January 2014

VIIRS Day/Night Band image, taken 07:08 UTC 12 January 2014. Interesting features have been identified and labelled.

This case occurred when the moon was 90% full. The brightest water occurs where the surface is calm and the “glint angle” is less than 10°.  When the surface is not calm, waves scatter the light in different directions and only a portion of the light is reflected to the satellite. This makes the water appear not as bright. For glint angles between 0° and 30°, waves will scatter some of the light back to the satellite, and the water won’t appear dark. Calm water outside the 10° glint zone will appear dark, though, because the angle of the water surface isn’t right to reflect the moonlight back to the satellite. This is what you see along the coast of Texas. Outside of the 30° zone, waves aren’t at the proper angle to reflect light back to the satellite.

To demonstrate this, here’s a comparison with the same area on the next orbit along with the glint angles:

Comparison between DNB images and lunar glint angle for consecutive VIIRS overpasses on 12 January 2014

Comparison between DNB images and lunar glint angle for consecutive VIIRS overpasses on 12 January 2014.

On the next overpass, about 100 minutes later, all the water is outside the glint zone (the glint angles are all higher than 100°) and the water is dark everywhere, as expected.