Low-Cost Weather Satellite Images

Picture Transmission
Don Hillger and Garry Toth

For decades, satellite images have been beamed to the ground and made available to those with low-cost receiving equipment through the Automatic Picture Transmission (APT) system. The system was designed to provide real-time, low-spatial-resolution weather satellite images from analog signals. On the other hand, full-resolution images are delayed until the satellite passes over ground stations with the appropriate receiving equipment. This is necessarily more complex and more expensive than APT receiving equipment.

The first APT system was carried as a payload on TIROS-8 launched in 1963, and continued as a service on subsequent TIROS, ESSA, ITOS, NOAA, and the first two of NASA’s Nimbus series of weather satellites. Beginning in 1972 the APT system was also carried on the Russian weather satellites starting with Meteor-11. The most recent NOAA-18 launched in 2005 still had APT on board, as will NOAA-19 yet to be launched. Thus the APT service will be available into the 2010s. However the APT system will change in the future to a digital format called the Low Rate Picture Transmission (LRPT) on satellites that will replace the NOAA series.

The current APT system provides low-resolution analog images from data provided by the Advanced Very High Resolution Radiometer (AVHRR) carried by NOAA satellites. Two channels are continuously transmitted using analog VHF signals. These channels are a visible image and an infrared image during the day and two different infrared images at night. This allows the use of simple, low-cost ground equipment for APT reception.

An APT satellite image consists of lines that come from a scan of the earth. Successive scans are made as the satellite moves in its orbit. In polar orbits, the satellite is within view of an earth receiver for only about 15 minutes. The time will be less if the satellite does not pass directly overhead. The higher the satellite is in the sky above the receiver, the stronger the signal and the better the data reception. The APT system was designed with these constraints in mind.

Shown above is a December 15, 1968, launch cover of ESSA-8 that provided launch and recovery weather reports for Apollo-8 using two APT cameras covering a 2,000 mile range. The Apollo-8 astronauts are also pictured on this cover.

There are three stamps that show APT-like images. Dominica issued a stamp (1973/Scott 359) that pictures what appears to be a 35mm film with an image of clouds associated with a hurricane over the Gulf of Mexico. Several land and ocean features can also be identified such
as the Yucatan peninsula and Cuba. To the south of the Yucatan we see the land surfaces of Honduras, Nicaragua, and Costa Rica.

A similar APT-like image is found on a stamp issued by Grenada (1973/Scott 496). A photograph has been added to the image of the sun god Demeter to show the island of Grenada and its capital St. George on the west coast. With the large size of this relatively small island, it's less likely that it represents a low-spatial-resolution APT image; instead, it may be the higher-spatial-resolution image from which an APT signal was derived.

A third APT-like image is found on a stamp issued by Hungary (1973/Scott 2019). The satellite image shows clouds in a tight spiral with a low pressure system at the very center. Also pictured is the Intercosmos-1 (IK1) satellite sending images to a helical APT antenna. A large number of postal items depict such antennas. The IK series is not known to have carried APT transmitters, but this satellite

Large Helical APT Antenna
Receives Image Of Cloud
East Germany (Scott 983)

that was launched in 1969 might have served as the platform for testing the first Soviet APT systems.

APT Antennas

The most common APT antenna is either helical or corkscrew-shaped. The helical antenna allows reception of the right-hand circular-polarized APT signals transmitted by the satellite. Communications antennas that use single-plane polarization will lose the signal when the transmitter and receiver are not in the same orientation. APT systems use circular polarization to overcome this problem.

Another advantage is that unwanted signals reflected off nearby objects are rejected by the APT system. Since circular-polarized signals occupy all planes, they undergo less signal loss due to absorption than other types of signals. East Germany issued a stamp (1960/Scott 983) showing a large helical APT antenna pointing skyward. The stamp also pictures a drawing of clouds in a large spiral around a low pressure system over Europe.

An issue by Kenya, Uganda, and Tanzania (1973/Scott 262) shows another helical APT antenna pointed toward a

Satellite Sends Images
To Helical APT Antenna
Hungary (Scott 2019)

This Helical APT Antenna
Is Positioned Manually
Kenya, Uganda, And
Tanzania (Scott 262)
TIROS/ESSA satellite. In this case a man is manually moving the antenna while listening to the satellite signal on headphones. Even large antennas can be finely balanced so that an operator can easily point the antenna in the right direction.

Most polar-orbiting weather satellites fly over a given location at about the same time of day. However, since there is not an even number of orbits per day, the satellite overpass varies from day to day. Thus a tracking station must know the orbit in order to track the satellite with the antenna and receive the APT signal. Omnidirectional APT antennas also exist. They do not need to be moved to follow the satellite. However, the authors have found no such antennas on postal items.

A Maldivian Islands issue (1973/Scott 467) shows yet another helical APT antenna. This one appears to be driven by motors rather than by hand. The orbit of the APT-equipped satellite can be determined either manually or with a computer. The resulting coordinates are then used to position the antenna. In either case, the satellite orbital elements and a recent equator crossing longitude are used to plot future satellite orbits. That, along with knowledge of the APT receiver’s location and the satellite’s orbital geometry, indicates where to point the antenna as the satellite flies over.

Another type of APT antenna is shown on a Vietnam stamp (1973/Scott 447). Instead of a helical design, the antenna uses a a directional antenna that defines the path of maximum signal strength. This antenna is called the Yagi-Uda antenna; it is named after Hidetsugu Yagi and Shintaro Uda of Japan who jointly invented it in 1926. On this stamp, the APT antenna points toward an ITOS satellite. We also see a drawing of the cloud pattern around a typhoon with a small dot indicating the eye.

There are also multiple versions of the single Yagi-Uda antenna. These are also higher-gain antennas, and many of them are associated with the reception of the signals from balloon-borne instrumentation. One of the best representations occurs on a stamp issued by Russia (1981/Scott 4898). It shows an antenna with four Yagi-Udas, but they are not crossed so they are not for receiving circular-polarized APT signals.

Finally, a number of postal items show multiple-helix antennas. These look somewhat like single-helix APT antennas but are not for APT. One of the best phil-
ateletic examples of a multiple-helix antenna is found on a stamp issued by France (1962/Scott 1047). The four-helix antenna, pointing skyward, sits next to a dome at the Pleumeur-Bodou telecommunications ground station.

As we have seen, the various elements of APT systems are well represented on postal items. The popularity of these inexpensive images ensures that the APT system will continue into the future, even though the format will change from analog to digital and the name will change accordingly.

For a checklist of postal items referring to APT systems, see the authors' webpage at <http://www.cira.colostate.edu/ramm/hillger/apt.htm>. The authors would be interested in hearing from readers who may know of additional postal items related to the APT system.

Don Hillger, PhD, is a research meteorologist with the National Oceanic and Atmospheric Administration (NOAA) and holds a cooperative position at Colorado State University. Send correspondence to 309 North Shores Circle, Windsor, CO 80550-2614; or E-mail: <hillger@cira.colostate.edu>.

Garry Toth, MSc, is a research meteorologist with Environment Canada at the Prairie and Arctic Storm Prediction Centre. Send correspondence to 6310 101 Avenue, #306, NW, Edmonton, AB T6A 0H5 Canada; or E-mail: <garry_toth@hotmail.com>.

When Answering Ads, Please Say
"I Saw Your Ad In Topical Time."

Wonderful World of Stamps
Over 10,000 items - many with images on our newly re-designed website with a more advanced search engine where you can search by country or topic, with new items added weekly.

or visit ZOS - Zillions of stamps
Nothing could be easier!!

Wonderful World of Stamps / Dollar Stamp Store
POB 55 - St. Martin, Laval, Quebec, Canada, H7V 3P4
Tel: (450) 687-0632 Fax: (450) 687-3143
e-mail: info@topicalsetc.com
www.topicalsetc.com