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Short Abstract:

We apply Neural Networks (NN) to the detection and tracking, of Karenia brevis Harmful Algal
Blooms (KB HABs) that plague the coasts of the West Florida Shelf (WFS) using Visible Infrared Imaging
Radiometer Suite (VIIRS) satellite observations. Previous approaches primarily used observations from
the Moderate Resolution Imaging Spectroradiometer Aqua (MODIS-A) satellite. They depended on the
remote sensing reflectance signal at the 678 nm chlorophyll fluorescence band (Rrs678) needed for the
normalized fluorescence height (nFLH) algorithms which proved effective for KB HABS retrievals. VIIRS
which has replaced MODIS-A, unfortunately does not have a 678 nm fluorescence channel. To overcome
that hurdle, we customized our NN approach to retrieve phytoplankton absorption at 443 nm (0,h443)
using only Rrs measurements from existing VIIRS channels at 486, 551 and 671 nm. The a,p443 values in
these retrieved VIIRS images, can in turn be correlated to chlorophyll-a concentrations [Chla] and KB cell
counts. To retrieve KB values, the VIIRS NN retrieved a,n413 images are filtered by applying limiting
constraints, defined by (i) low backscatter at Rrs 551 nm and (ii) a minimum a,n443 value known to be
associated with KB HABs in the WFS. The resulting filtered residual VIIRS images are shown to very
effectively delineate and quantify existing KB HABs in the WFS. Comparison with historical in-situ
measurements and MODIS-A satellite retrievals over the 2011-15 period confirm the viability and
efficacy of the NN approach.
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Background of KB HABS in

In united states alone it has been estimated - g
that $30-$70 million is lost annually as a
result of HABs (Fisher et al., 2003). Recent
July 4t 2016 bloom had a major effect on
economy and health.

Approximately 5,000 species of
phytoplankton, only about 300 of them could
cause color change.

In waters containing Karenia brevis (KB)
greater than 104 cells Lt (high- chlorophll-a
waters ~1-10 mg m3), ~ 3-4 fold decrease in
Rrs(A\) compared to waters containing fewer
than 104 cells L-* of KB.

Decrease in Rrs(A) for KB blooms would
cause the water to appear darker since the
green reflectance peak at 570 nm is less
(green, olive green, black “darker” with high
Chla). Although a red reflectance peak (~685-
7oonm) due to chlorophyll a florescence
becomes increasingly, KB blooms do not
appear as red in color visually as they do
radiometrically because receptors of the
human eye are only slightly sensitive to this
portion of the visible spectrum




MODIS & VIIRS satellite capability for KB HABS =
detections

e MODIS Retrieval of KB uses nFLH
Technique which requires 678nm
Fluorescence band

5 P

. o 3 b
 Unfortunately spectral analysis showed g

that VIIRS could not discriminate these
high-phytoplankton water patches
within the dark water due to its lack of
fluorescence band (678nm).

e Band not available on VIIRS providing
impetus for NN technique, using as

input 486, 551 and 6712 nm available in
VIIRS.




Goal:

To have an effective KB HAB, detection and tracking approach for use with VIIRS
satallite without the availability of fluorescence channel.

So that NOAA can extend its HAB monitoring capabilities to VIIRS and continue to support
local authorities in their forecasting of beach conditions, including health warnings etc.
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Neural Networks (NN) Algorithm Architecture.

* NN developed in previous work, was trained on (10,000) simulated dataset
based on wide range of coastal and oceanic NOMAD IOPs.

+ Tested and validated on another 10,000 simulated dataset and field measurements.

* Uses VIIRS Rrs input at 486, 551 & 671 nm, values used at a

longer A which are not greatly impacted by atmospheric correction

* Output of (aph, adg, adm & bbp) all at 443 (which at the peak of

aph and thus exhibit most variation )

* We are only interested at aph443 at this work

Bio-optical model

Pure Water:
., by, bb,,
(Pope and Fry, 1997)

Phytoplankton:
Dpn {_443), bph (443). Cpn [443),
bbyp (443), Chla

CDOM:
a,(443), CDOM

NAP:

Adm (443}- bd‘m (443} Cam (443}4-
bb g (443), NAP

T e

a; (443), b, (443), ¢, (443), bb, (443)

20,000 simulated dataset
generated as random
variables in the NOMAD
prescribed ranges typical
for coastal and oceanic
water conditions

1 Forward model h
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Radiative Transfer
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Retrieved NN [a,,(443

‘w" { ‘ 10
retrieved aph(443), m?
Example test in Chesapeake bay,

showed good potential for NN Retrievals
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VIIRS NN retrievals of ag,,.; andits conversion tos
equivalent [Chla]. From Rrs at 486, 551 & 671 nm

VIIRS Pixels limitations

“Light gray represents cloud cover or invalid flagged
" NN retrieval

0.15

Using the NASA Level 2, L2gen data
processing system, all pixels under
the following conditions were
considered in the comparison:

A

Any individual pixel is excluded 295 N | ———

from the image if it has been
flagged land, cloud, failure in
atmospheric correction, stray light,
bad navigation ?_uality, both ig
and moderate glint, negative
Rayleigh-corrected radiance,
viewing angle larger than 60°, and
solar zenith angle larger than 70°.
Moreover, data of any individual
pixels which have water-leaving
radiance spectra with negative 285 N
values in one of the wavelength are

also excluded from spatial

averaging.

o
N

29.0°N S

Equ'\iv. [Ceohla]

Retrieved a ;443
o
&

0 28.0 N |

84.0° W 83.5 W 83.00 W

[Chla] = (ay,,,/ 0.051) *35%

Using empirical relationships, which have been determined
from in-situ measurements and reported for the
WFS. Chengfeng Le & Chuanmin Hu, (2013)
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Example of reported KB HABS in-situ measurements (8/27;
9/17/2014) against which tested our retrievals.

We based our study on this major bloom Approach applied in WFS for KB-HABs Detections
09/2014. which had concurrent or near
concurrent in-situ measurements e First we relate VIIRS Rrs (486,551,671) to aph443 using
reported by NOAA HABSOS. NN for estimation of Concentrations

aph443 which is a [Chla].

300N NOAA-HABSOS
fiﬁ [Cell Counts Report] A Then, in asecond critical step, we evolve limiting

criteria which make use of two facts (Cannizzaro, 2009)

. I. low backscatter bb,551 < max specific value.
295N &Equiv. Rrs,.,, = 0.006 sr*
Il. high [Chla] > min specific value.
Appuy; 2 0.061 m™?
>

&Equiv. [Chla] 1.9 mg m-3

290N These limiting criteria are applied to retrieved VIIRS

retrievals of Rrs.,, < 0.006 sr* & a,,,,, 2 0.061 m™
(to effectively delineate and quantify KB )

We know KB HABS are characterized by low
backscatter at 551 nm and aph443 above certain
minimum value.

Rrs 551nm is proportional to backscatter. So we
examine Rrs 551nm and aph443 that are compatible

28.0N ;
YT, CeuCnnntstCInss:ﬁcanm: with KB existence from HABSOS in-situ retrievals
x Not Observed which are overlaid on Rrs 551 nm and NN aph443
“’*”"FJ’L'“”I‘]”’”“”J retrievals to establish limiting compatible values of

© Low (10,000-100,000) : :
© Medium (100,000-1,000,000) these two. These are then applied to retrieved Rrs

@tigh (1,000,000+) 551 nm, as Filter 1, and to retrieved NN aph443,

NOAA HABSOS data with in-situ KB concentrations, for period as Filter 2_’ limiting filter Vall_JeS and thus excluding
8/27/2014-9/17/2014. all other pixels that are outside these values.



F1 Filter

Known fact KB HABs are characterized by low backscatter therefore we devise a filte
based on upper limit of backscatter and equivalent Rrsgs; values to NN VIIRS retrievals.

Indeed, K. brevis is an ineffective backscatterer due to its large size (20—40 um) and relatively low index of refraction (1.05) Instead.
the primary source of bb,r in oceanic waters is particles less than 1 um (Morel and Ahn, 1991; Stramski and Kiefer, 1991).

“Dark gray represents F1 mask and Light gray represents cloud cover or invalid data™

Rrs(551)
. max-limit<0.006

0.015

30.0 N

P( Rr5(551)
¥

295 N

0.01

29.0 N

0.005

285 N

KIIRS

09/G272014
280 N
84.0° W 83.5 W 83.0° W 0
(3¢) VIIRS Rrs,, image. Which we use it as a proxy for bbp, BY inspection we (3d) This max value used to generate a mask F1 mask (dark gray), which eliminate ail
find that the highest value Of_ Rrs551 consistent with the existence of KB HABs values of {Rrs_,} 2 0.006 sr'* and therefore incompatible with KB HABS, when mask is
is {Rrsg,} < 0.006 s applied to image residual pixels, are then compatible with KB HABs



F1 & F2 Filters combined show the extent of
blooms

Application of filter F2 based on known minimum a,,443 value compatible with KB HABs applied consecutively to
residual pixels from FL1.

“Dark gray represents F1&F2 masks and Light gray represents cloud cover or invalid data”

22~ MODIS-A NN retrieval | [ (5, NOAA-HABSOS
0150 s00' iﬁ*’# “\\ F1&F2-Applied=a | | [Cell Counts Report]
295'N 11. (5b) 295N
0.1“."5_
lap]
% 29.0°N '_' - 29.0N
<= L
’!F- Cells L
0.05 5
285 N 3 285N
AN
iMDDIS-—A ﬁ ,
‘ 09/02/2014 ™ ol l28.0%

O™ 260N 84.0°W 835 W 83.0° W 84.0 W 835 W 83.00 W 84.0'W 83.5'W 83.0°'W
New residual pixells ?f both masks satisfy both maximum Cell Counts/L Classification:
backscatter and minimum a,,,, ,criteria and there for X ifﬂffzbser;fgﬂm

. o] =
compatible and represent KB HABs o Low uﬁua-w’u,m}iu

Q@ Medium (100,000-1,000,000)
@:igh (1,000,000+)
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OC1/0C3,, VIIRS NN and MODIS nFLH Equiv. [Chla] retrie

OCI1/OC3 NASA Ocean Color

product for chlorophyll-a [2]:

and comparisons.

This algorithm returns the near- «
surface concentration of
chlorophyll-a (chlor_a) in pg L?,
calculated using an empirical
algorithm to estimate [Chla]
concentrations in the global

ocean.

[2] NASA’s OceanColor
Web by the Ocean Biology
Processing Group (OBPG) at
NASA’s Goddard Space
Flight

Center. Available online:
http://oceancolor.gsfc.nasa.
gov/cms/atbd/chlor_a/

MODIS-A nFLH-NN

(the relative height of
Rrs(555) from a
background, i.e.,
difference between
Rrs(555) and a baseline
formed linearly between
Rrs(443) and Rrs(670))

VIIRS OCI/OC3
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RGCI, VIIRS NN and MODIS nFLH Equiv. [Chla] retrievals anta =

comparisons.
. o Data (R?=0.49, £=1.19, N=3359)
We next examine the Red Green chlorophyll-a Index RGCI -% - Y=1.41X + 0.09
[Chla] retrievals [Lin Qi, C. Hu 2015]: N i
et -~ .
8D | 89 o3t
—_ X | XT e
IR B2 *
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: : . L Rrs _ < AT ‘
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vals

In-situ measurements Vs. VIIRS NN KB-HABs retré
(2012-2015)

* To verify the association between
K. brevis cell abundance and VIIRS
ocean color Level 2 phytoplankton
absorption

values for K. brevis cell abundance
collected by Florida Fish and Wildlife
Conservation Commission (FWC), were
combined and compared to VIIRS
retrievals, for the period between 2012
and 2015 (94 data points).

28" N

* Over the range 0.01-3.7 10° cells L
and a,,,, (chlorophyll-a) values
from 0.085 to 1.53 m™* (0.6449 to 99
pg L3) the regression coefficient
was 0.32 (Shown next Slide). 26N

KB-HABs cell counts limitations

In-situ Cell unts (Cell L)

Classification of Values:
tLow (10,000-100,000)

Cell counts under the following conditions were considered in the
comparison:

© Medium (100,000-1,000,000)
@ High (1,000,000+)

84" W 82 W

*Sample depth < 0.5 meter.

«Cell counts ~ >10,000 cell L
(Low to High blooms)

*The pixels used for match-up comparison are all extracted from a smaller
region, nearest pixel (<0.3 mile) to the in-situ locations. Moreover all flags
mentioned previously are excluded.
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In-situ measurements Vs. VIIRS NN KB-HABs retrléva-
(2012-2015) W

KB In-situ observation within the same day of VIIRS image
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Fig. 13(a-d): In-situ observationOwithin the sarhe day of VIBRS image: (a))J¥1IRS NN retrieved 4,443 against In-
situ KB cell counts; (b) VIIRS NN equiv. [Chla] against in-situ cell counts; (c¢) VIIRS OCI/OC3 retrieved [Chla]

against in-situ KB cell counts; (d) VIIRS RGCI retrieved [Chla] against in-situ KB cell counts. Color coding of the

dots denotes distance to shore, with blue being the closest.




To compare the impact of temporal changes between satellite
observations and in-situ measurements for NN, OCI/OC3 and
RGCI retrieval, windows of
(<1 hours & < 30 minutes were selected).



In-situ measurements Vs. VIIRS NN KB-HAIé»“s'rtn vals
(2012-2015) limited observation windows
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Evaluation of NN KB HABs retrievals for specific bloom
events.

(08/28/2014, 11/16/2014and 10/09/2012, blooms. ).
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Fig. VIIRS-NN KB HABs retrievals for blooms date (08/28/2014), showing bloom compatible a,,,,; and equiv.
Chla] values. There are total of 20 match-ups in that day. Notes image are overlaid with cell counts for this
date. There are total of 20 match-ups in that day.
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Florida Shelf (WFS)
Neural Networks (NN) algorithm architecture.

and its equivalent [Chla]

ABs) in West

NN retrievals of a,,,
Application of filters we devised for KB HABs detection.

Inter-technique comparisons of KB HAB retrievals in WFS:

NN against other available MODIS Fluorescence based techniques
including: nFLH

NN against other available non Fluorescence based techniques : OCI/OC3
and RGCI (Note: OCI very similar to OC3 and gives almost identical results)

Comparisons of VIIRS NN, OCI and RGCl techniques against in-situ
measurements, including an evaluation of the NN technique for specific

bloom dates.

Conclusion



Conclusions

" The use of NN retrievals of aph443 from VIIRS show
promise as a viable technique for detecting and tracking
KB HABs in the WFS, when combined with retrieved
Rrsgg1 and aph443 criteria compatible with low KB
backscatter and minimum aph443.

» Retrieval show importance of temporal considerations.

" Further detail comparisons with in-situ measurements
are planned and considerations of subpixel variability
addressed. Factors affecting false positives and
negatives remain to be investigated in details.
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